Bubbly turbulent flow in a channel is investigated using interface-resolved direct numerical simulation. An efficient coupled level-set volume-of-fluid solver based on a fast Fourier transform algorithm is implemented to enable a high resolution and fast computation at the same time. Up to 384 bubbles are seeded in the turbulent channel flow corresponding to 5.4% gas volume fraction. Bubbles are clustered in the channel center due to the downward flow direction. The bubbles induce additional pseudo-turbulence in the channel center and are also able to attenuate the energy in the boundary layer by reducing the shear production. Turbulent kinetic energy budget indicates a significant buoyancy production in the channel center. A local equilibrium between buoyancy production and dissipation is observed here besides the shear production peak in the boundary layer. Comparing the local production and dissipation indicates a coexistence of boundary layer turbulence near the wall and bubble-induced pseudo-turbulence in the channel center. The liquid phase and gas phase are coupled through the complex liquid–gas interface. Local flow topology analysis is depicted in the liquid phase around the bubbles as well as in the gas phase. The flow topology of the liquid phase and the gas phase differs from each other significantly. Local dissipation is more dominant in the liquid phase near the bubble interface, whereas local enstrophy is preferred in the gas phase. In the liquid phase, a high dissipation event is preferred close to the interface, whereas a high enstrophy event is dominant away from the interface.

1.
D.
Lohse
, “
Bubble puzzles: From fundamentals to applications
,”
Phys. Rev. Fluids
3
,
110504
(
2018
).
2.
S.
Elghobashi
, “
Direct numerical simulation of turbulent flows laden with droplets or bubbles
,”
Annu. Rev. Fluid Mech.
51
,
217
244
(
2019
).
3.
J. M.
Mercado
,
D. C.
Gomez
,
D.
Van Gils
,
C.
Sun
, and
D.
Lohse
, “
On bubble clustering and energy spectra in pseudo-turbulence
,”
J. Fluid Mech.
650
,
287
306
(
2010
).
4.
A. W.
Vreman
and
J. G. M.
Kuerten
, “
Comparison of direct numerical simulation databases of turbulent channel flow at Reτ= 180
,”
Phys. Fluids
26
,
015102
(
2014
).
5.
X.
Chu
,
B.
Weigand
, and
V.
Vaikuntanathan
, “
Flow turbulence topology in regular porous media: From macroscopic to microscopic scale with direct numerical simulation
,”
Phys. Fluids
30
,
065102
(
2018
).
6.
X.
Chu
,
G.
Yang
,
S.
Pandey
, and
B.
Weigand
, “
Direct numerical simulation of convective heat transfer in porous media
,”
Int. J. Heat Mass Transfer
133
,
11
20
(
2019
).
7.
X.
Chu
,
Y.
Wu
,
U.
Rist
, and
B.
Weigand
, “
Instability and transition in an elementary porous medium
,”
Phys. Rev. Fluids
5
,
044304
(
2020
).
8.
S.
Pandey
,
X.
Chu
,
E.
Laurien
, and
B.
Weigand
, “
Buoyancy induced turbulence modulation in pipe flow at supercritical pressure under cooling conditions
,”
Phys. Fluids
30
,
065105
(
2018
).
9.
J.
Hasslberger
,
M.
Klein
, and
N.
Chakraborty
, “
Flow topologies in bubble-induced turbulence: A direct numerical simulation analysis
,”
J. Fluid Mech.
857
,
270
290
(
2018
).
10.
S.
Fleckenstein
and
D.
Bothe
, “
Simplified modeling of the influence of surfactants on the rise of bubbles in VOF-simulations
,”
Chem. Eng. Sci.
102
,
514
523
(
2013
).
11.
C.
Pesci
,
A.
Weiner
,
H.
Marschall
, and
D.
Bothe
, “
Computational analysis of single rising bubbles influenced by soluble surfactant
,”
J. Fluid Mech.
856
,
709
763
(
2018
).
12.
G.
Yang
,
X.
Chu
,
V.
Vaikuntanathan
,
S.
Wang
,
J.
Wu
,
B.
Weigand
, and
A.
Terzis
, “
Droplet mobilization at the walls of a microfluidic channel
,”
Phys. Fluids
32
,
012004
(
2020
).
13.
P.
Cifani
,
J. G. M.
Kuerten
, and
B. J.
Geurts
, “
Highly scalable DNS solver for turbulent bubble-laden channel flow
,”
Comput. Fluids
172
,
67
83
(
2018
).
14.
X.
Li
,
D.
Gao
,
B.
Hou
, and
X.
Wang
, “
A mass-conserving lattice Boltzmann method for bubble behavior estimation
,”
Chem. Eng. Sci.
193
,
76
88
(
2019
).
15.
M. S.
Dodd
and
A.
Ferrante
, “
On the interaction of Taylor length scale size droplets and isotropic turbulence
,”
J. Fluid Mech.
806
,
356
412
(
2016
).
16.
W.
Sander
and
B.
Weigand
, “
Direct numerical simulation and analysis of instability enhancing parameters in liquid sheets at moderate Reynolds numbers
,”
Phys. Fluids
20
,
053301
(
2008
).
17.
C.
Zhu
,
M.
Ertl
, and
B.
Weigand
, “
Numerical investigation on the primary breakup of an inelastic non-Newtonian liquid jet with inflow turbulence
,”
Phys. Fluids
25
,
083102
(
2013
).
18.
B.
Bunner
and
G.
Tryggvason
, “
Dynamics of homogeneous bubbly flows. Part 1. Rise velocity and microstructure of the bubbles
,”
J. Fluid Mech.
466
,
17
52
(
2002
).
19.
J.
Lu
and
G.
Tryggvason
, “
Numerical study of turbulent bubbly downflows in a vertical channel
,”
Phys. Fluids
18
,
103302
(
2006
).
20.
J.
Lu
and
G.
Tryggvason
, “
Dynamics of nearly spherical bubbles in a turbulent channel upflow
,”
J. Fluid Mech.
732
,
166
189
(
2013
).
21.
T.
Ma
,
C.
Santarelli
,
T.
Ziegenhein
,
D.
Lucas
, and
J.
Fröhlich
, “
Direct numerical simulation–based Reynolds-averaged closure for bubble-induced turbulence
,”
Phys. Rev. Fluids
2
,
034301
(
2017
).
22.
Z.
Zhang
,
D.
Legendre
, and
R.
Zamansky
, “
Model for the dynamics of micro-bubbles in high-Reynolds-number flows
,”
J. Fluid Mech.
879
,
554
578
(
2019
).
23.
X.
Zhang
,
J.
Wang
, and
D.
Wan
, “
Euler–Lagrange study of bubble drag reduction in turbulent channel flow and boundary layer flow
,”
Phys. Fluids
32
,
027101
(
2020
).
24.
J.
Fang
,
M.
Rasquin
, and
I. A.
Bolotnov
, “
Interface tracking simulations of bubbly flows in PWR relevant geometries
,”
Nucl. Eng. Des.
312
,
205
213
(
2017
).
25.
J.
Fang
,
J. J.
Cambareri
,
M.
Li
,
N.
Saini
, and
I. A.
Bolotnov
, “
Interface-resolved simulations of reactor flows
,”
Nucl. Technol.
206
,
133
(
2019
).
26.
A. W.
Vreman
and
J. G. M.
Kuerten
, “
Turbulent channel flow past a moving array of spheres
,”
J. Fluid Mech.
856
,
580
632
(
2018
).
27.
A.
Du Cluzeau
,
G.
Bois
, and
A.
Toutant
, “
Analysis and modelling of Reynolds stresses in turbulent bubbly up-flows from direct numerical simulations
,”
J. Fluid Mech.
866
,
132
168
(
2019
).
28.
V.
Pandey
,
R.
Ramadugu
, and
P.
Perlekar
, “
Liquid velocity fluctuations and energy spectra in three-dimensional buoyancy-driven bubbly flows
,”
J. Fluid Mech.
884
,
R6
(
2020
).
29.
V.
Mathai
,
D.
Lohse
, and
C.
Sun
, “
Bubbly and buoyant particle–laden turbulent flows
,”
Annu. Rev. Condens. Matter Phys.
11
,
529
559
(
2020
).
30.
J.
Lelouvetel
,
T.
Tanaka
,
Y.
Sato
, and
K.
Hishida
, “
Transport mechanisms of the turbulent energy cascade in upward/downward bubbly flows
,”
J. Fluid Mech.
741
,
514
542
(
2014
).
31.
J. M.
Mercado
,
V. N.
Prakash
,
Y.
Tagawa
,
C.
Sun
,
D.
Lohse
, and
International Collaboration for Turbulence Research
, “
Lagrangian statistics of light particles in turbulence
,”
Phys. Fluids
24
,
055106
(
2012
).
32.
G.
Riboux
,
F.
Risso
, and
D.
Legendre
, “
Experimental characterization of the agitation generated by bubbles rising at high Reynolds number
,”
J. Fluid Mech.
643
,
509
(
2010
).
33.
E.
Alméras
,
V.
Mathai
,
D.
Lohse
, and
C.
Sun
, “
Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence
,”
J. Fluid Mech.
825
,
1091
1112
(
2017
).
34.
A. E.
Perry
and
M. S.
Chong
, “
A description of eddying motions and flow patterns using critical-point concepts
,”
Annu. Rev. Fluid Mech.
19
,
125
155
(
1987
).
35.
M. S.
Chong
,
A. E.
Perry
, and
B. J.
Cantwell
, “
A general classification of three-dimensional flow fields
,”
Phys. Fluids A
2
,
765
777
(
1990
).
36.
J.
Soria
,
R.
Sondergaard
,
B. J.
Cantwell
,
M. S.
Chong
, and
A. E.
Perry
, “
A study of the fine-scale motions of incompressible time-developing mixing layers
,”
Phys. Fluids
6
,
871
884
(
1994
).
37.
H. M.
Blackburn
,
N. N.
Mansour
, and
B. J.
Cantwell
, “
Topology of fine-scale motions in turbulent channel flow
,”
J. Fluid Mech.
310
,
269
292
(
1996
).
38.
A.
Ooi
,
J.
Martin
,
J.
Soria
, and
M. S.
Chong
, “
A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence
,”
J. Fluid Mech.
381
,
141
174
(
1999
).
39.
M. S.
Dodd
and
L.
Jofre
, “
Small-scale flow topologies in decaying isotropic turbulence laden with finite-size droplets
,”
Phys. Rev. Fluids
4
,
064303
(
2019
).
40.
M.
Sussman
,
P.
Smereka
,
S.
Osher
 et al, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J. Comput. Phys.
114
,
146
(
1994
).
41.
G.
Tryggvason
,
B.
Bunner
,
A.
Esmaeeli
,
D.
Juric
,
N.
Al-Rawahi
,
W.
Tauber
,
J.
Han
,
S.
Nas
, and
Y.-J.
Jan
, “
A front-tracking method for the computations of multiphase flow
,”
J. Comput. Phys.
169
,
708
759
(
2001
).
42.
B.
Lafaurie
,
C.
Nardone
,
R.
Scardovelli
,
S.
Zaleski
, and
G.
Zanetti
, “
Modelling merging and fragmentation in multiphase flows with SURFER
,”
J. Comput. Phys.
113
,
134
147
(
1994
).
43.
J.
Schlottke
and
B.
Weigand
, “
Direct numerical simulation of evaporating droplets
,”
J. Comput. Phys.
227
,
5215
5237
(
2008
).
44.
M.
Baggio
and
B.
Weigand
, “
Numerical simulation of a drop impact on a superhydrophobic surface with a wire
,”
Phys. Fluids
31
,
112107
(
2019
).
45.
M.
Sussman
and
E. G.
Puckett
, “
A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows
,”
J. Comput. Phys.
162
,
301
337
(
2000
).
46.
M.
Kwakkel
,
W.-P.
Breugem
, and
B. J.
Boersma
, “
Extension of a CLSVOF method for droplet-laden flows with a coalescence/breakup model
,”
J. Comput. Phys.
253
,
166
188
(
2013
).
47.
N.
Talebanfard
,
H.
Nemati
, and
B. J.
Boersma
, “
Heat transfer in deforming droplets with a direct solver for a coupled level-set and volume of fluid method
,”
Int. Commun. Heat Mass Transfer
108
,
104272
(
2019
).
48.
M. S.
Dodd
and
A.
Ferrante
, “
A fast pressure-correction method for incompressible two-fluid flows
,”
J. Comput. Phys.
273
,
416
434
(
2014
).
49.
M.
Kwakkel
, “
Numerical modeling of turbulent dense dispersed two-phase flows
,” Ph.D. thesis,
Delft University of Technology
,
2016
.
50.
S.
Pandey
,
X.
Chu
, and
E.
Laurien
, “
Investigation of in-tube cooling of carbon dioxide at supercritical pressure by means of direct numerical simulation
,”
Int. J. Heat Mass Transfer
114
,
944
957
(
2017
).
51.
K. R.
Sreenivasan
and
R. A.
Antonia
, “
The phenomenology of small-scale turbulence
,”
Annu. Rev. Fluid Mech.
29
,
435
472
(
1997
).
52.
P. K.
Yeung
,
D. A.
Donzis
, and
K. R.
Sreenivasan
, “
Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers
,”
J. Fluid Mech.
700
,
5
15
(
2012
).
You do not currently have access to this content.