We report viscous flow properties of a redox-active organic molecule, N-(2-(2-methoxyethoxy)ethyl)phenothiazine (MEEPT), a candidate for non-aqueous redox flow batteries, and two of its radical cation salts. A microfluidic viscometer enabled the use of small sample volumes in determining viscosity as a function of shear rate and concentration in the non-aqueous solvent, acetonitrile, both with and without supporting salts. All solutions tested show Newtonian behavior over shear rates of up to 30 000 s−1, which was rationalized by scaling arguments for the diffusion-based relaxation time of a single MEEPT molecule without aggregation. Neat MEEPT is flowable but with a large viscosity (412 mPas at room temperature), which is ∼1000 times larger than that of acetonitrile. MEEPT solutions in acetonitrile have low viscosities; at concentrations up to 0.5 M, the viscosity increases by less than a factor of two. From concentration-dependent viscosity measurements, molecular information was inferred from intrinsic viscosity (hydrodynamic diameter) and the Huggins coefficient (interactions). Model fit credibility was assessed using the Bayesian Information Criterion. It is found that the MEEPT and its charged cations are “flowable” and do not flocculate at concentrations up to 0.5 M. MEEPT has a hydrodynamic diameter of around 8.5 Å, which is almost insensitive to supporting salt and state of charge. This size is comparable to molecular dimensions of single molecules obtained from optimized structures using density functional theory calculations. The results suggest that MEEPT is a promising candidate for redox flow batteries in terms of its viscous flow properties.

1.
A. Z.
Weber
,
M. M.
Mench
,
J. P.
Meyers
,
P. N.
Ross
,
J. T.
Gostick
, and
Q.
Liu
, “
Redox flow batteries: A review
,”
J. Appl. Electrochem.
41
,
1137
1164
(
2011
).
2.
R. M.
Darling
,
K. G.
Gallagher
,
J. A.
Kowalski
,
S.
Ha
, and
F. R.
Brushett
, “
Pathways to low-cost electrochemical energy storage: A comparison of aqueous and nonaqueous flow batteries
,”
Energy Environ. Sci.
7
,
3459
3477
(
2014
).
3.
P.
Leung
,
X.
Li
,
C.
Ponce de León
,
L.
Berlouis
,
C. T. J.
Low
, and
F. C.
Walsh
, “
Progress in redox flow batteries, remaining challenges and their applications in energy storage
,”
RSC Adv.
2
,
10125
10156
(
2012
).
4.
M.
Skyllas-Kazacos
,
M. H.
Chakrabarti
,
S. A.
Hajimolana
,
F. S.
Mjalli
, and
M.
Saleem
, “
Progress in flow battery research and development
,”
J. Electrochem. Soc.
158
,
R55
R79
(
2011
).
5.
G. L.
Soloveichik
, “
Flow batteries: Current status and trends
,”
Chem. Rev.
115
,
11533
(
2015
).
6.
M. A.
Goulet
,
L.
Tong
,
D. A.
Pollack
,
D. P.
Tabor
,
S. A.
Odom
,
A.
Aspuru-Guzik
,
E. E.
Kwan
,
R. G.
Gordon
, and
M. J.
Aziz
, “
Extending the lifetime of organic flow batteries via redox state management
,”
J. Am. Chem. Soc.
141
,
8014
8019
(
2019
).
7.
J. A.
Kowalski
,
L.
Su
,
J. D.
Milshtein
, and
F. R.
Brushett
, “
Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries
,”
Curr. Opin. Chem. Eng.
13
,
45
52
(
2016
).
8.
J.
Zhang
,
R. E.
Corman
,
J. K.
Schuh
,
R. H.
Ewoldt
,
I. A.
Shkrob
, and
L.
Zhang
, “
Solution properties and practical limits of concentrated electrolytes for nonaqueous redox flow batteries
,”
J. Phys. Chem. C
122
,
8159
8172
(
2018
).
9.
K. L.
Gering
, “
Prediction of electrolyte viscosity for aqueous and non-aqueous systems: Results from a molecular model based on ion solvation and a chemical physics framework
,”
Electrochim. Acta
51
,
3125
3138
(
2006
).
10.
Z. P.
Rosol
,
N. J.
German
, and
S. M.
Gross
, “
Solubility, ionic conductivity and viscosity of lithium salts in room temperature ionic liquids
,”
Green Chem.
11
,
1453
1457
(
2009
).
11.
T.
Katase
,
K.
Murase
,
T.
Hirato
, and
Y.
Awakura
, “
Redox and transport behaviors of Cu(I) ions in TMHA-Tf2N ionic liquid solution
,”
J. Appl. Electrochem.
37
,
339
344
(
2007
).
12.
J. L.
Barton
,
J. D.
Milshtein
,
J. J.
Hinricher
, and
F. R.
Brushett
, “
Quantifying the impact of viscosity on mass-transfer coefficients in redox flow batteries
,”
J. Power Sources
399
,
133
143
(
2018
).
13.
V. A.
Iyer
,
J. K.
Schuh
,
E. C.
Montoto
,
V.
Pavan Nemani
,
S.
Qian
,
G.
Nagarjuna
,
J.
Rodríguez-López
,
R. H.
Ewoldt
, and
K. C.
Smith
, “
Assessing the impact of electrolyte conductivity and viscosity on the reactor cost and pressure drop of redox-active polymer flow batteries
,”
J. Power Sources
361
,
334
344
(
2017
).
14.
H. W.
Bindner
,
C.
Krog Ekman
,
O.
Gehrke
, and
F. R.
Isleifsson
,
Characterization of Vanadium Flow Battery
(
Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi
,
Roskilde, Denmark
,
2010
).
15.
L. J.
Small
,
H. D.
Pratt
 III
,
C. L.
Staiger
, and
T. M.
Anderson
, “
MetILs3: A strategy for high density energy storage using redox-active ionic liquids
,”
Adv. Sustainable Syst.
1
,
1700066
(
2017
).
16.
Q.
Xu
,
T. S.
Zhao
,
L.
Wei
,
C.
Zhang
, and
X. L.
Zhou
, “
Electrochemical characteristics and transport of Fe(II)/Fe(III) redox couple in a non-aqueous reline deep eutectic solvent
,”
Electrochim. Acta
154
,
462
467
(
2015
).
17.
C.
Zhang
,
T. S.
Zhao
,
Q.
Xu
,
L.
An
, and
G.
Zhao
, “
Effects of operating temperature on the performance of vanadium redox flow batteries
,”
Appl. Energy
155
,
349
353
(
2015
).
18.
S.
Kim
,
M.
Vijayakumar
,
W.
Wang
,
J.
Zhang
,
B.
Chen
,
Z.
Nie
,
F.
Chen
,
J.
Hu
,
L.
Li
, and
Z.
Yang
, “
Chloride supporting electrolytes for all-vanadium redox flow batteries
,”
Phys. Chem. Chem. Phys.
13
,
18186
18193
(
2011
).
19.
X.
Li
,
J.
Xiong
,
A.
Tang
,
Y.
Qin
,
J.
Liu
, and
C.
Yan
, “
Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery
,”
Appl. Energy
211
,
1050
1059
(
2018
).
20.
N.
Wang
,
Y.
Chen
,
H.
Han
,
M.
Cao
,
X.
Bi
,
S.
Peng
, and
X.
Cheng
, “
Influence of l-cystine as an additive in the negative electrolyte on performance of vanadium redox flow battery
,”
Int. J. Electrochem. Sci.
12
,
2893
2908
(
2017
).
21.
M.
Burgess
,
K.
Hernández-Burgos
,
J. K.
Schuh
,
J.
Davila
,
E. C.
Montoto
,
R. H.
Ewoldt
, and
J.
Rodríguez-López
, “
Modulation of the electrochemical reactivity of solubilized redox active polymers via polyelectrolyte dynamics
,”
J. Am. Chem. Soc.
140
,
2093
2104
(
2018
).
22.
M. T.
Zafarani-Moattar
and
R.
Majdan-Cegincara
, “
Viscosity modeling and prediction of aqueous mixed electrolyte solutions
,”
Ind. Eng. Chem. Res.
48
,
5833
5844
(
2009
).
23.
X.
Li
,
Y.
Qin
,
W.
Xu
,
J.
Liu
,
J.
Yang
,
Q.
Xu
, and
C.
Yan
, “
Investigation of electrolytes of the vanadium redox flow battery (IV): Measurement and prediction of viscosity of aqueous VOSO4 solution at 283.15 to 323.15 K
,”
J. Mol. Liq.
224
,
893
899
(
2016
).
24.
X.
Li
,
C.
Jiang
,
J.
Liu
,
Y.
Qin
,
Z.
Zhang
,
Z.
Liu
,
J.
Yang
, and
C.
Yan
, “
Prediction of viscosity for high-concentrated ternary solution (CH3SO3H + VOSO4 + H2O) in vanadium flow battery
,”
J. Mol. Liq.
297
,
111908
(
2020
).
25.
X.
Li
,
C.
Jiang
,
Y.
Qin
,
J.
Liu
,
J.
Yang
,
Q.
Xu
, and
C.
Yan
, “
Investigation of electrolytes of the vanadium redox flow battery (VII): Prediction of the viscosity of mixed electrolyte solution (VOSO4 + H2SO4 + H2O) based on Eyring’s theory
,”
J. Chem. Thermodyn.
134
,
69
75
(
2019
).
26.
E. R.
Logan
,
E. M.
Tonita
,
K. L.
Gering
,
J.
Li
,
X.
Ma
,
L. Y.
Beaulieu
, and
J. R.
Dahn
, “
A study of the physical properties of Li-ion battery electrolytes containing esters
,”
J. Electrochem. Soc.
165
,
A21
A30
(
2018
).
27.
C. W.
Macosko
,
RHEOLOGY: Principles, Measurements, and Applications
(
VCH Publishers, Inc.
,
New York
,
1994
).
28.
A.
Ogawa
,
H.
Yamada
,
S.
Matsuda
,
K.
Okajima
, and
M.
Doi
, “
Viscosity equation for concentrated suspensions of charged colloidal particles
,”
J. Rheol.
41
,
769
785
(
1997
).
29.
B. D.
Todd
and
P. J.
Daivis
, “
Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: Techniques and applications
,”
Mol. Simul.
33
,
189
229
(
2007
).
30.
D. J.
Evans
and
W. B.
Streett
, “
Transport properties of homonuclear diatomics
,”
Mol. Phys.
36
,
161
176
(
1978
).
31.
D. J.
Evans
, “
The frequency dependent shear viscosity of methane
,”
Mol. Phys.
37
,
1745
1754
(
1979
).
32.
I.
Borzsák
,
P. T.
Cummings
, and
D. J.
Evans
, “
Shear viscosity of a simple fluid over a wide range of strain rates
,”
Mol. Phys.
100
,
2735
2738
(
2002
).
33.
J.
Petravic
, “
Shear stress relaxation in liquids
,”
J. Chem. Phys.
120
,
10188
10193
(
2004
).
34.
Y.
Zhang
,
L.
Xue
,
F.
Khabaz
,
R.
Doerfler
,
E. L.
Quitevis
,
R.
Khare
, and
E. J.
Maginn
, “
Molecular topology and local dynamics govern the viscosity of imidazolium-based ionic liquids
,”
J. Phys. Chem. B
119
,
14934
14944
(
2015
).
35.
J. D.
Milshtein
,
A. P.
Kaur
,
M. D.
Casselman
,
J. A.
Kowalski
,
S.
Modekrutti
,
P. L.
Zhang
,
N.
Harsha Attanayake
,
C. F.
Elliott
,
S. R.
Parkin
,
C.
Risko
,
F. R.
Brushett
, and
S. A.
Odom
, “
High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries
,”
Energy Environ. Sci.
9
,
3531
3543
(
2016
).
36.
A.
Einstein
, “
A new determination of molecular dimensions
,” Ph.D. thesis,
Unviersity of Zurich
,
1905
.
37.
M. L.
Huggins
, “
The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration
,”
J. Am. Chem. Soc.
64
,
2716
2718
(
1942
).
38.
G.
Jones
and
M.
Dole
, “
The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride
,”
J. Am. Chem. Soc.
51
,
2950
2964
(
1929
).
39.
G. K.
Batchelor
, “
The effect of Brownian motion on the bulk stress in a suspension of spherical particles
,”
J. Fluid Mech.
83
,
97
117
(
1977
).
40.
A. P.
Kaur
,
O. C.
Harris
,
N. H.
Attanayake
,
Z.
Liang
,
S. R.
Parkin
,
M. H.
Tang
, and
S. A.
Odom
, “
Quantifying environmental effects on the solution and solid state stability of phenothiazine radical cations
,”
Chem. Mater.
32
,
3007
3017
(
2020
).
41.
C.
Reichardt
, “
Solvatochromic dyes as solvent polarity indicators
,”
Chem. Rev.
94
,
2319
2358
(
1994
).
42.
J.
Maes
,
L.
Verlooy
,
O. E.
Buenafe
,
P. A. M.
de Witte
,
C. V.
Esguerra
, and
A. D.
Crawford
, “
Evaluation of 14 organic solvents and carriers for screening allications in zebrafish embryos and larvae
,”
PLoS One
7
,
e43850
(
2012
).
43.
R. H.
Ewoldt
,
M. T.
Johnston
, and
L. M.
Caretta
, “
Experimental challenges of shear rheology: How to avoid bad data,
” in , Springer Biological Engineering Series, edited by
S.
Spagnolie
(
Springer
,
2015
) pp.
207
241
.
44.
RhenSense, Inc., m-VROC Viscometer-Controlled Shear Rates and Small Samples, https://Www.Rheosense.Com/Products/Viscometers/m-Vroc/Overview.
45.
Ad Hoc Committee Official Nomenclature and Symbols
, “
Official symbols and nomenclature of the society of rheology
,”
J. Rheol.
57
,
1047
1055
(
2013
).
46.
T.
Jyothi Latha
and
S.
Jayanti
, “
Hydrodynamic analysis of flow fields for redox flow battery applications
,”
J. Appl. Electrochem.
44
,
995
1006
(
2014
).
47.
Y. K.
Zeng
,
X. L.
Zhou
,
L.
Zeng
,
X. H.
Yan
, and
T. S.
Zhao
, “
Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields
,”
J. Power Sources
327
,
258
264
(
2016
).
48.
H.
Falkenhagen
, “
Viscosity of electrolytes
,”
Nature
127
,
439
440
(
1931
).
49.
H.
Falkenhagen
and
E. L.
Vernon
, “
LXII. The viscosity of strong electrolyte solutions according to electrostatic theory
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
14
,
537
565
(
1932
).
50.
M.
Duduta
,
B.
Ho
,
V. C.
Wood
,
P.
Limthongkul
,
V. E.
Brunini
,
W. C.
Carter
, and
Y.-M.
Chiang
, “
Semi-solid lithium rechargeable flow battery
,”
Adv. Energy Mater.
1
,
511
516
(
2011
).
51.
MATLAB, version 7.10.0 (R2019a),
The MathWorks, Inc.
,
MA
,
2019
.
52.
P. K.
Singh
,
J. M.
Soulages
, and
R. H.
Ewoldt
, “
On fitting data for parameter estimates: Residual weighting and data representation
,”
Rheol. Acta
58
,
341
459
(
2019
).
53.
P. C.
Hiemenz
and
T. P.
Lodge
,
Polymer Chemistry
, 2nd ed. (
CPC Press
,
2007
).
54.
P. A.
Lovell
, “
Dilute solution viscometry
,”
Compr. Polym. Sci. Suppl.
1
,
173
197
(
1989
).
55.
R. G.
Larson
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press, Inc.
,
New York
,
1999
).
56.
J. B.
Freund
and
R. H.
Ewoldt
, “
Quantitative rheological model selection: Good fits versus credible models using Bayesian inference
,”
J. Rheol.
59
,
667
701
(
2015
).
57.
D.
Sivia
and
J.
Skilling
,
Data Analysis: A Bayesian Tutorial
, 2nd ed. (
Oxford University Press
,
2006
).
58.
L.
Grunberg
and
A. H.
Nissan
, “
Mixture law for viscosity
,”
Nature
164
,
799
800
(
1949
).
59.
N. H.
Attanayake
,
Z.
Liang
,
Y.
Wang
,
A. P.
Kaur
,
G.
Baggi
,
S. R.
Parkin
,
J. K.
Mobley
,
R. H.
Ewoldt
,
J.
Landon
, and
S. A.
Odom
, “
Supporting-salt-free concentration nonaqueous redox flow cell electrolytes containing permanently charged active materials
” (submitted).
60.
I. M.
Krieger
, “
A dimensional approach to colloid rheology
,”
Trans. Soc. Rheol.
7
,
101
109
(
1963
).
61.
J. C.
van der Werff
and
C. G.
de Kruif
, “
Hard-sphere colloidal dispersions: The scaling of rheological properties with particle size, volume fraction, and shear rate
,”
J. Rheol.
33
,
421
454
(
1989
).
62.
J. M.
Dealy
, “
Weissenberg and Deborah numbers—Their definition and use
,”
Rheol. Bull.
79
,
14
18
(
2010
).

Supplementary Material

You do not currently have access to this content.