The process of liquid slip on rough-walled hydrophobic surfaces with and without entrapped gas bubbles is modeled. Here, starting with the Navier–Stokes equations, a set of partial differential equations (PDE) and boundary conditions for the general effective slip tensor of a rough hydrophobic surface are constructed by an asymptotic analysis. The intrinsic slip and surface roughness are considered as the characteristics of the surface. The solution is based on a weak variation form that fully recovers the set of PDE and Navier slip boundary. For the surface with entrapped bubbles, a semi-analytical model based on eigenfunction expansion is developed. In addition to the surface characteristics, the size and contact angle of the bubbles are considered in the semi-analytical solution. Both models are validated with the published data as well as direct numerical simulation. Based on the model results, we present correlations of effective slip length with surface characteristics and entrapped bubbles. We found that surface roughness reduces liquid slippage on a surface. However, if the asperities on a surface are filled with gas bubbles, the effective slip length can significantly increase as long as the bubble contact angle is small. Interestingly, bubbles with a larger contact angle could act inversely and change a hydrophobic surface with a large intrinsic slip to a no-slip or even a sticky surface. These results shed light on the controversy over the order of magnitude of the actual slip length of water flow in carbon-based nanotubes and nanochannels. The model results also help understand the anomalies of high water production and high amounts of hydraulic fracturing fluid leak-off observed in tight oil and shale gas reservoirs.

1.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
2.
F.
Javadpour
,
M.
McClure
, and
M.
Naraghi
, “
Slip-corrected liquid permeability and its effect on hydraulic fracturing and fluid loss in shale
,”
Fuel
160
,
549
(
2015
).
3.
C.-L.
Navier
, “
Memoire sur les les lois du lois du mouvement mouvement des des fluidesfluide
,” in
Memoire sur les Lois du Mouvementd des Fluides
,
1823
.
4.
D. M.
Huang
,
C.
Sendner
,
D.
Horinek
,
R. R.
Netz
, and
L. R.
Bocque
, “
Water slippage versus contact angle: A quasiuniversal relationship
,”
Phys. Rev. Lett.
101
,
226101
(
2008
).
5.
K.
Wu
,
Z.
Chen
,
J.
Li
,
X.
Li
,
J.
Xu
, and
X.
Dong
, “
Wettability effect on nanoconfined water flow
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
3358
(
2017
).
6.
S.
Wang
,
F.
Javadpour
, and
Q.
Feng
, “
Molecular dynamics simulations of oil transport through inorganic nanopores in shale
,”
Fuel
171
,
74
(
2016
).
7.
L. T.
Ko
,
R. G.
Loucks
,
S. C.
Ruppel
,
T.
Zhang
, and
S.
Peng
, “
Origin and characterization of Eagle Ford pore networks in the south Texas Upper Cretaceous shelf
,”
AAPG Bull.
101
,
387
(
2017
).
8.
D.
Crowdy
, “
Frictional slip lengths for unidirectional superhydrophobic grooved surfaces
,”
Phys. Fluids
23
,
072001
(
2011
).
9.
J.
Zhou
,
E. S.
Asmolov
,
F.
Schmid
, and
O. I.
Vinogradova
, “
Effective slippage on superhydrophobic trapezoidal grooves
,”
J. Chem. Phys.
139
,
174708
(
2013
).
10.
O. I.
Vinogradova
and
A. V.
Belyaev
, “
Wetting, roughness and flow boundary conditions
,”
J. Phys.: Condens. Matter
23
,
184104
(
2011
).
11.
C.
Kunert
and
J.
Harting
, “
Roughness induced boundary slip in microchannel flows
,”
Phys. Rev. Lett.
99
,
176001
(
2007
).
12.
U.
Lācis
and
S.
Bagheri
, “
A framework for computing effective boundary conditions at the interface between free fluid and a porous medium
,”
J. Fluid Mech.
812
,
866
(
2017
).
13.
U.
Lācis
,
Y.
Sudhakar
,
S.
Pasche
, and
S.
Bagheri
, “
Transfer of mass and momentum at rough and porous surfaces
,”
J. Fluid Mech.
884
,
A21
(
2019
).
14.
G. A.
Zampogna
,
J.
Magnaudet
, and
A.
Bottaro
, “
Generalized slip condition over rough surfaces
,”
J. Fluid Mech.
858
,
407
(
2019
).
15.
D.
Einzel
,
P.
Panzer
, and
M.
Liu
, “
Boundary condition for fluid flow: Curved or rough surfaces
,”
Phys. Rev. Lett.
64
,
2269
(
1990
).
16.
P.
Panzer
,
M.
Liu
, and
D.
Einzel
, “
The effects of boundary curvature on hydrodynamic fluid flow: Calculation of slip lengths
,”
Int. J. Mod. Phys. B
06
,
3251
(
1992
).
17.
N. J.
Lund
,
X. P.
Zhang
,
K.
Mahelona
, and
S. C.
Hendy
, “
Calculation of effective slip on rough chemically heterogeneous surfaces using a homogenization approach
,”
Phys. Rev. E
86
,
046303
(
2012
).
18.
K.
Kamrin
and
H. A.
Stone
, “
The symmetry of mobility laws for viscous flow along arbitrarily patterned surfaces
,”
Phys. Fluids
23
,
031701
(
2011
).
19.
K. E. N.
Kamrin
,
M. Z.
Bazant
, and
H. A.
Stone
, “
Effective slip boundary conditions for arbitrary periodic surfaces: The surface mobility tensor
,”
J. Fluid Mech.
658
,
409
(
2010
).
20.
A.
Niavarani
and
N. V.
Priezjev
, “
The effective slip length and vortex formation in laminar flow over a rough surface
,”
Phys. Fluids
21
,
052105
(
2009
).
21.
L.
Guo
,
S.
Chen
, and
M. O.
Robbins
, “
Effective slip boundary conditions for sinusoidally corrugated surfaces
,”
Phys. Rev. Fluids
1
,
074102
(
2016
).
22.
M.
Sbragaglia
and
A.
Prosperetti
, “
A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces
,”
Phys. Fluids
19
,
043603
(
2007
).
23.
T. L.
Kirk
, “
Asymptotic formulae for flow in superhydrophobic channels with longitudinal ridges and protruding menisci
,”
J. Fluid Mech.
839
,
R3
(
2018
).
24.
C.
Schönecker
and
S.
Hardt
, “
Longitudinal and transverse flow over a cavity containing a second immiscible fluid
,”
J. Fluid Mech.
717
,
376
(
2013
).
25.
D.
Crowdy
, “
Slip length for longitudinal shear flow over a dilute periodic mattress of protruding bubbles
,”
Phys. Fluids
22
,
121703
(
2010
).
26.
E. S.
Asmolov
,
T. V.
Nizkaya
, and
O. I.
Vinogradova
, “
Enhanced slip properties of lubricant-infused grooves
,”
Phys. Rev. E
98
,
033103
(
2018
).
27.
J. S.
Marshall
, “
Exact formulae for the effective slip length of a symmetric superhydrophobic channel with flat or weakly curved menisci
,”
SIAM J. Appl. Math.
77
,
1606
(
2017
).
28.
S. E.
Game
,
M.
Hodes
, and
D. T.
Papageorgiou
, “
Effects of slowly varying meniscus curvature on internal flows in the Cassie state
,”
J. Fluid Mech.
872
,
272
(
2019
).
29.
D. G.
Crowdy
, “
Perturbation analysis of subphase gas and meniscus curvature effects for longitudinal flows over superhydrophobic surfaces
,”
J. Fluid Mech.
822
,
307
(
2017
).
30.
C.-O.
Ng
,
H. C. W.
Chu
, and
C. Y.
Wang
, “
On the effects of liquid-gas interfacial shear on slip flow through a parallel-plate channel with superhydrophobic grooved walls
,”
Phys. Fluids
22
,
102002
(
2010
).
31.
A. M. J.
Davis
and
E.
Lauga
, “
Geometric transition in friction for flow over a bubble mattress
,”
Phys. Fluids
21
,
011701
(
2009
).
32.
C.-O.
Ng
and
C. Y.
Wang
, “
Effective slip for Stokes flow over a surface patterned with two- or three-dimensional protrusions
,”
Fluid Dyn. Res.
43
,
065504
(
2011
).
33.
C.-O.
Ng
and
C. Y.
Wang
, “
Stokes shear flow over a grating: Implications for superhydrophobic slip
,”
Phys. Fluids
21
,
013602
(
2009
).
34.
J.
Hyvaluoma
and
J.
Harting
, “
Slip flow over structured surfaces with entrapped microbubbles
,”
Phys. Rev. Lett.
100
,
246001
(
2008
).
35.
S.
Jiménez Bolaños
and
B.
Vernescu
, “
Derivation of the Navier slip and slip length for viscous flows over a rough boundary
,”
Phys. Fluids
29
,
057103
(
2017
).
36.
F.
Hecht
, “
New development in freefem++
,”
J. Numer. Math.
20
,
251
(
2012
).
37.
L. G.
Leal
,
Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis
, Butterworth-Heinemann Series in Chemical Engineering (
Butterworth-Heinemann
,
Boston
,
1992
).
38.
J.
Zhao
,
Q.
Kang
,
J.
Yao
,
L.
Zhang
,
Z.
Li
,
Y.
Yang
, and
H.
Sun
, “
Lattice Boltzmann simulation of liquid flow in nanoporous media
,”
Int. J. Heat Mass Transfer
125
,
1131
(
2018
).
39.
Z.
Chai
,
B.
Shi
,
Z.
Guo
, and
J.
Lu
, “
Gas flow through square arrays of circular cylinders with Klinkenberg effect: A lattice Boltzmann study
,”
Commun. Comput. Phys.
8
,
1052
(
2010
).
40.
Y.
Sudhakar
,
U.
Lacis
,
S.
Pasche
, and
S.
Bagheri
, “
Higher order homogenized boundary conditions for flows over rough and porous surfaces
,” arXiv:1909.07125 (
2019
).
41.
O. I.
Vinogradova
and
G. E.
Yakubov
, “
Surface roughness and hydrodynamic boundary conditions
,”
Phys. Rev. E
73
,
045302
(
2006
).
42.
C.
Kunert
,
J.
Harting
, and
O. I.
Vinogradova
, “
Random-roughness hydrodynamic boundary conditions
,”
Phys. Rev. Lett.
105
,
016001
(
2010
).
43.
A.
Mongruel
,
T.
Chastel
,
E. S.
Asmolov
, and
O. I.
Vinogradova
, “
Effective hydrodynamic boundary conditions for microtextured surfaces
,”
Phys. Rev. E
87
,
011002
(
2013
).
44.
A.
Marciniak-Czochra
and
A.
Mikelić
, “
Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization
,”
Multiscale Model. Simul.
10
,
285
(
2012
).
45.
N. J.
Lund
,
Effective Slip Lengths for Stokes Flow over Rough, Mixed-Slip Surfaces
(
Victoria University of Wellington
,
2015
).
46.
E.
Bonaccurso
,
H. J.
Butt
, and
V. S.
Craig
, “
Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system
,”
Phys. Rev. Lett.
90
,
144501
(
2003
).
47.
A.
Lee
and
H.-Y.
Kim
, “
Does liquid slippage within a rough channel always increase the flow rate?
,”
Phys. Fluids
26
,
072002
(
2014
).
48.
K.
Ritos
,
D.
Mattia
,
F.
Calabrò
, and
J. M.
Reese
, “
Flow enhancement in nanotubes of different materials and lengths
,”
J. Chem. Phys.
140
,
014702
(
2014
).
49.
Q.
Xie
,
M. A.
Alibakhshi
,
S.
Jiao
,
Z.
Xu
,
M.
Hempel
,
J.
Kong
,
H. G.
Park
, and
C.
Duan
, “
Fast water transport in graphene nanofluidic channels
,”
Nat. Nanotechnol.
13
,
238
(
2018
).
50.
U.
Torres-Herrera
and
E.
Corvera Poiré
, “
An analytical framework to determine flow velocities within nanotubes from their vibration frequencies
,”
Phys. Fluids
30
,
122001
(
2018
).
51.
C.-O.
Ng
and
R.
Sun
, “
Pressure loss in channel flow resulting from a sudden change in boundary condition from no-slip to partial-slip
,”
Phys. Fluids
29
,
103603
(
2017
).
52.
D.
Crowdy
, “
Slip length for transverse shear flow over a periodic array of weakly curved menisci
,”
Phys. Fluids
29
,
091702
(
2017
).
53.
A.
Popadić
,
J. H.
Walther
,
P.
Koumoutsakos
, and
M.
Praprotnik
, “
Continuum simulations of water flow in carbon nanotube membranes
,”
New J. Phys.
16
,
082001
(
2014
).
54.
C. R.
Doering
and
P.
Constantin
, “
Energy dissipation in shear driven turbulence
,”
Phys. Rev. Lett.
69
,
1648
(
1992
).
55.
E.
Karatay
,
A. S.
Haase
,
C. W.
Visser
,
C.
Sun
,
D.
Lohse
,
P. A.
Tsai
, and
R. G.
Lammertink
, “
Control of slippage with tunable bubble mattresses
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
8422
(
2013
).
56.
C. R.
McKee
and
A. C.
Bumb
, “
Flow-testing coalbed methane production wells in the presence of water and gas
,”
SPE Form. Eval.
2
,
599
(
1987
).
57.
S. F.
Jones
,
G. M.
Evans
, and
K. P.
Galvin
, “
Bubble nucleation from gas cavities—A review
,”
Adv. Colloid Interface Sci.
80
,
27
(
1999
).
58.
D.
Lohse
and
X.
Zhang
, “
Surface nanobubbles and nanodroplets
,”
Rev. Mod. Phys.
87
,
981
(
2015
).
59.
S.
Psaltis
,
T.
Farrell
,
K.
Burrage
,
P.
Burrage
,
P.
McCabe
,
T.
Moroney
,
I.
Turner
, and
S.
Mazumder
, “
Mathematical modelling of gas production and compositional shift of a CSG (coal seam gas) field: Local model development
,”
Energy
88
,
621
(
2015
).
60.
M. Z.
Bazant
and
O. I.
Vinogradova
, “
Tensorial hydrodynamic slip
,”
J. Fluid Mech.
613
,
125
(
2008
).
61.
S.
Schmieschek
,
A. V.
Belyaev
,
J.
Harting
, and
O. I.
Vinogradov
, “
Tensorial slip of super-hydrophobic channels
,”
Phys. Rev. E
85
,
016324
(
2012
).
You do not currently have access to this content.