In micro/nano-devices, the low-speed transport of mass, momentum, and energy through long-ducts is frequently encountered, thereby necessitating scientific investigations. Here, long-ducts of various annular cross sections conducting low-speed gas flows under the influence of a small pressure gradient are considered, in order to understand how the mass flow rate is affected by rarefaction, variations in the radius ratio, and eccentricity of annular geometries. The Boltzmann model equation is treated by a low-variance formulation and simulated by a stochastic kinetic particle-based approach, which addresses the deviation of the molecular distribution function from equilibrium to reduce computational cost significantly. An efficient parallel solver has also been developed and utilized in this research, which is validated against the reported results in the literature. The efficient kinetic particle treatment provides a powerful simulation tool to reveal multi-scale flow physics, which is essential to develop and optimize micro/nano-fluidic devices.

1.
B. V.
Antohe
,
J. L.
Lage
,
D. C.
Price
, and
R. M.
Weber
, “
Numerical characterization of micro heat exchangers using experimentally tested porous aluminum layers
,”
Int. J. Heat Fluid Flow
17
,
594
603
(
1996
).
2.
S.
Cha
,
R.
O’Hayre
, and
F. B.
Prinz
, “
The influence of size scale on the performance of fuel cells
,”
Solid State Ionics
175
,
789
795
(
2004
).
3.
A. A.
Merrikh
and
J. L.
Lage
, “
Effect of blood flow on gas transport in a pulmonary capillary
,”
J. Biomech. Eng.
127
,
432
439
(
2005
).
4.
E. B.
Arkilic
,
M. A.
Schmidt
, and
K. S.
Breuer
, “
Gaseous slip flow in long microchannels
,”
J. Microelectromech. Syst.
6
,
167
178
(
1997
).
5.
T.
Araki
,
M. S.
Kim
,
H.
Iwai
, and
K.
Suzuki
, “
An experimental investigation of gaseous flow characteristics in microchannels
,”
Microscale Thermophys. Eng.
6
,
117
130
(
2002
).
6.
J.
Maurer
,
P.
Tabeling
,
P.
Joseph
, and
H.
Willaime
, “
Second-order slip laws in microchannels for helium and nitrogen
,”
Phys. Fluids
15
,
2613
2621
(
2003
).
7.
J.
Liu
,
Y.-C.
Tai
, and
C.-M. H.-C.
Pong
, “
MEMS for pressure distribution studies of gaseous flows in microchannels
,” in
Proceedings of IEEE Micro Electro Mechanical Systems
(
IEEE
,
1995
), p.
209
.
8.
M.
Gad-el Hak
,
The MEMS Handbook
(
CRC Press
,
2001
).
9.
J. C.
Harley
,
Y.
Huang
,
H. H.
Bau
, and
J. N.
Zemel
, “
Gas flow in micro-channels
,”
J. Fluid Mech.
284
,
257
274
(
1995
).
10.
G.
Karniadakis
,
A.
Beskok
, and
N.
Aluru
,
Microflows and Nanoflows: Fundamentals and Simulation
(
Springer Science + Business Media
,
2006
), Vol. 29.
11.
E. H.
Kennard
 et al.,
Kinetic Theory of Gases, with an Introduction to Statistical Mechanics
(
McGraw-Hill
,
1938
).
12.
W. A.
Ebert
and
E. M.
Sparrow
, “
Slip flow in rectangular and annular ducts
,”
J. Basic Eng.
87
,
1018
1024
(
1965
).
13.
Z.
Duan
and
Y. S.
Muzychka
, “
Slip flow in elliptic microchannels
,”
Int. J. Therm. Sci.
46
,
1104
1111
(
2007
).
14.
Z.
Duan
and
Y. S.
Muzychka
, “
Slip flow in non-circular microchannels
,”
Microfluid. Nanofluid.
3
,
473
484
(
2007
).
15.
C.
Aubert
and
S.
Colin
, “
High-order boundary conditions for gaseous flows in rectangular microducts
,”
Microscale Thermophys. Eng.
5
,
41
54
(
2001
).
16.
S.
Colin
,
P.
Lalonde
, and
R.
Caen
, “
Validation of a second-order slip flow model in rectangular microchannels
,”
Heat Transfer Eng.
25
,
23
30
(
2004
).
17.
A.
Sreekanth
, “
Slip flow through long circular tubes
,” in
Proceedings of the Sixth International Symposium in Rarefied Gas Dynamics
(
Academic Press
,
New York
,
1969
), Vol. 1, pp.
667
680
.
18.
R. W.
Barber
and
D. R.
Emerson
, “
Challenges in modeling gas-phase flow in microchannels: From slip to transition
,”
Heat Transfer Eng.
27
,
3
12
(
2006
).
19.
L.
Wu
,
H.
Liu
,
Y.
Zhang
, and
J. M.
Reese
, “
Influence of intermolecular potentials on rarefied gas flows: Fast spectral solutions of the Boltzmann equation
,”
Phys. Fluids
27
,
082002
(
2015
).
20.
P.
Wang
,
M. T.
Ho
,
L.
Wu
,
Z.
Guo
, and
Y.
Zhang
, “
A comparative study of discrete velocity methods for low-speed rarefied gas flows
,”
Comput. Fluids
161
,
33
46
(
2018
).
21.
M.
Ho
,
L.
Zhu
,
L.
Wu
,
P.
Wang
,
Z.
Guo
,
Z.
Li
, and
Y.
Zhang
, “
A multi-level parallel solver for rarefied gas flows in porous media
,”
Comput. Phys. Commun.
234
,
14
25
(
2019
).
22.
W.
Yang
,
X.-J.
Gu
,
L.
Wu
,
D. R.
Emerson
,
Y.
Zhang
, and
S.
Tang
, “
A hybrid approach to couple the discrete velocity method and method of moments for rarefied gas flows
,”
J. Comput. Phys.
410
,
109397
(
2020
).
23.
X.
Zhao
,
C.
Wu
,
Z.
Chen
,
L.
Yang
, and
C.
Shu
, “
Reduced order modeling-based discrete unified gas kinetic scheme for rarefied gas flows
,”
Phys. Fluids
32
,
067108
(
2020
).
24.
W.
Su
,
L.
Zhu
,
P.
Wang
,
Y.
Zhang
, and
L.
Wu
, “
Can we find steady-state solutions to multiscale rarefied gas flows within dozens of iterations?
,”
J. Comput. Phys.
407
,
109245
(
2020
).
25.
V. A.
Rykov
,
V. A.
Titarev
, and
E. M.
Shakhov
, “
Rarefied Poiseuille flow in elliptical and rectangular tubes
,”
Fluid Dyn.
46
,
456
466
(
2011
).
26.
F.
Sharipov
, “
Rarefied gas flow through a long rectangular channel
,”
J. Vac. Sci. Technol., A
17
,
3062
3066
(
1999
).
27.
F.
Sharipov
, “
Non-isothermal gas flow through rectangular microchannels
,”
J. Micromech. Microeng.
9
,
394
(
1999
).
28.
I.
Graur
and
M. T.
Ho
, “
Rarefied gas flow through a long rectangular channel of variable cross section
,”
Vacuum
101
,
328
332
(
2014
).
29.
V. A.
Titarev
and
E. M.
Shakhov
, “
Kinetic analysis of the isothermal flow in a long rectangular microchannel
,”
Comput. Math. Math. Phys.
50
,
1221
1237
(
2010
).
30.
S.
Varoutis
and
D.
Valougeorgis
, “
Estimation of the Poiseuille number in gas flows through rectangular nano- and micro-channels in the whole range of the Knudsen number
,” in
IUTAM Symposium on Advances in Micro- and Nano-Fluidics
(
Springer
,
2009
), pp.
79
86
.
31.
L. M.
Yang
,
C.
Shu
,
W. M.
Yang
, and
J.
Wu
, “
An improved three-dimensional implicit discrete velocity method on unstructured meshes for all Knudsen number flows
,”
J. Comput. Phys.
396
,
738
760
(
2019
).
32.
V.
Titarev
,
M.
Dumbser
, and
S.
Utyuzhnikov
, “
Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions
,”
J. Comput. Phys.
256
,
17
33
(
2014
).
33.
I.
Graur
and
F.
Sharipov
, “
Gas flow through an elliptical tube over the whole range of the gas rarefaction
,”
Eur. J. Mech.: B/Fluids
27
,
335
345
(
2008
).
34.
I.
Graur
and
F.
Sharipov
, “
Non-isothermal flow of rarefied gas through a long pipe with elliptic cross section
,”
Microfluid. Nanofluid.
6
,
267
275
(
2009
).
35.
S.
Naris
,
D.
Valougeorgis
,
D.
Kalempa
, and
F.
Sharipov
, “
Flow of gaseous mixtures through rectangular microchannels driven by pressure, temperature, and concentration gradients
,”
Phys. Fluids
17
,
100607
(
2005
).
36.
S.
Varoutis
,
S.
Naris
,
V.
Hauer
,
C.
Day
, and
D.
Valougeorgis
, “
Computational and experimental study of gas flows through long channels of various cross sections in the whole range of the Knudsen number
,”
J. Vac. Sci. Technol., A
27
,
89
100
(
2009
).
37.
G.
Breyiannis
,
S.
Varoutis
, and
D.
Valougeorgis
, “
Rarefied gas flow in concentric annular tube: Estimation of the Poiseuille number and the exact hydraulic diameter
,”
Eur. J. Mech.: B/Fluids
27
,
609
622
(
2008
).
38.
N.
Dongari
,
C.
White
,
T. J.
Scanlon
,
Y.
Zhang
, and
J. M.
Reese
, “
Effects of curvature on rarefied gas flows between rotating concentric cylinders
,”
Phys. Fluids
25
,
052003
(
2013
).
39.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon
,
1994
).
40.
Q.
He
,
Q.
Wang
,
X.
Wang
, and
L.
Luo
, “
DSMC simulation of low-speed gas flow and heat transfer in 2D rectangular micro-channel
,”
Prog. Comput. Fluid Dyn.
5
,
230
235
(
2005
).
41.
L. L.
Baker
and
N. G.
Hadjiconstantinou
, “
Variance reduction for Monte Carlo solutions of the Boltzmann equation
,”
Phys. Fluids
17
,
051703
(
2005
).
42.
L. L.
Baker
and
N. G.
Hadjiconstantinou
, “
Variance reduction in particle methods for solving the Boltzmann equation
,” in
ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels
(
American Society of Mechanical Engineers, ASME
,
2006
), pp.
377
383
.
43.
T. M. M.
Homolle
and
N. G.
Hadjiconstantinou
, “
A low-variance deviational simulation Monte Carlo for the Boltzmann equation
,”
J. Comput. Phys.
226
,
2341
2358
(
2007
).
44.
T. M. M.
Homolle
and
N. G.
Hadjiconstantinou
, “
Low-variance deviational simulation Monte Carlo
,”
Phys. Fluids
19
,
041701
(
2007
).
45.
G. A.
Radtke
,
N. G.
Hadjiconstantinou
, and
W.
Wagner
, “
Low-noise Monte Carlo simulation of the variable hard sphere gas
,”
Phys. Fluids
23
,
030606
(
2011
).
46.
G. A.
Radtke
and
N. G.
Hadjiconstantinou
, “
Variance-reduced particle simulation of the Boltzmann transport equation in the relaxation-time approximation
,”
Phys. Rev. E
79
,
056711
(
2009
).
47.
H. A.
Al-Mohssen
and
N. G.
Hadjiconstantinou
, “
Low-variance direct Monte Carlo simulations using importance weights
,”
ESAIM: Math. Modell. Numer. Anal.
44
,
1069
1083
(
2010
).
48.
L.
Szalmas
, “
Variance-reduced DSMC for binary gas flows as defined by the McCormack kinetic model
,”
J. Comput. Phys.
231
,
3723
3738
(
2012
).
49.
M. R.
Allshouse
and
N. G.
Hadjiconstantinou
, “
Low-variance deviational Monte Carlo simulations of pressure-driven flow in micro- and nano-scale channels
,”
AIP Conf. Proc.
1084
,
1015
1020
(
2008
).
50.
N. G.
Hadjiconstantinou
,
G. A.
Radtke
, and
L. L.
Baker
, “
On variance-reduced simulations of the Boltzmann transport equation for small-scale heat transfer applications
,”
J. Heat Transfer
132
,
112401
(
2010
).
51.
G. A.
Radtke
,
N. G.
Hadjiconstantinou
,
S.
Takata
, and
K.
Aoki
, “
On the second-order temperature jump coefficient of a dilute gas
,”
J. Fluid Mech.
707
,
331
341
(
2012
).
52.
G. A.
Radtke
,
J.-P. M.
Péraud
, and
N. G.
Hadjiconstantinou
, “
On efficient simulations of multiscale kinetic transport
,”
Philos. Trans. R. Soc., A
371
,
20120182
(
2013
).
53.
T.
Ewart
,
P.
Perrier
,
I. A.
Graur
, and
J. G.
Méolans
, “
Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes
,”
J. Fluid Mech.
584
,
337
356
(
2007
).
54.
D. B.
Newell
,
F.
Cabiati
,
J.
Fischer
,
K.
Fujii
,
S. G.
Karshenboim
,
H. S.
Margolis
,
E.
de Mirandés
,
P. J.
Mohr
,
F.
Nez
,
K.
Pachucki
 et al., “
The CODATA 2017 values of h, e, k, and NA for the revision of the SI
,”
Metrologia
55
,
L13
(
2018
).
55.
G. A.
Radtke
, “
Efficient simulation of molecular gas transport for micro- and nano-scale applications
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
2011
.
56.
C.
Cercignani
and
A.
Daneri
, “
Flow of a rarefied gas between two parallel plates
,”
J. Appl. Phys.
34
,
3509
3513
(
1963
).
57.
T.
Ohwada
, “
Higher order approximation methods for the Boltzmann equation
,”
J. Comput. Phys.
139
,
1
14
(
1998
).
58.
D.
Valougeorgis
, “
The friction factor of a rarefied gas flow in a circular tube
,”
Phys. Fluids
19
,
091702
(
2007
).
59.
J.
Meng
,
H.
Dongari
,
J.
Reese
, and
Y.
Zhang
, “
Breakdown parameter for kinetic modeling of multiscale gas flows
,”
Phys. Rev. E
89
,
063305
(
2014
).
You do not currently have access to this content.