The present paper elaborates on the experimental study of jet-excited pressure fluctuations in a Helmholtz oscillator model with two openings in a cylindrical cavity. The length of the cylindrical nozzle in the front cover N normalized by the nozzle diameter dN was N/dN = 0.125, 0.33, 0.47, and 0.67. The diameter of the outlet opening in the back cover dOUT was in the range dOUT/dN = 1–2.5. The length of the cylindrical cavity LCH determined the jet length LJET in the spacing between the covers, LCH/dN = 0.5–3.5. The amplitude–frequency spectra were studied when the oscillator configuration was changed in the indicated intervals. From the generation amplitude, the best ratio of the sizes of the nozzle, chamber, and outlet was determined. The appearance of the jet tone of the hole and the alternation of acoustic modes were observed with a smooth increase in the Reynolds number to ∼8 · 104. The measurements showed very high amplitude of pressure fluctuations in an oscillator with a short nozzle and a short chamber at a significant jet velocity. A slight increase in the length of the chamber led to a rapid decrease in the generation amplitude. It is determined that the tone frequency is usually much lower than the resonance frequency in the chamber. Moreover, the tone frequency gradually increases with increasing jet velocity, while the resonance frequency remains unchanged, close to the natural frequency of the cavity chamber.

1.
I. A.
Beresnev
and
P. A.
Johnson
, “
Elastic-wave stimulation of oil production: A review of methods and results
,”
Geophysics
59
(
6
),
1000
1017
(
1994
).
2.
E. A.
Marfin
,
Y. I.
Kravtsov
,
A. A.
Abdrashitov
,
R. N.
Gataullin
, and
A. R.
Galimzyanova
, “
Elastic-wave effect on oil production by in situ combustion: Field results
,”
Pet. Sci. Technol.
33
(
15-16
),
1526
1532
(
2015
).
3.
R. V.
Westermark
,
J. F.
Brett
, and
D. R.
Maloney
, “
Enhanced oil recovery with downhole vibration stimulation
,” in
Proceedings of SPE Production Operations Symposium
(
Society of Petroleum Engineers
,
2001
), pp.
555
567
.
4.
W. L.
Nyborg
,
C. L.
Woodbridge
, and
H. K.
Schilling
, “
Characteristics of jet-edge-resonator whistles
,”
J. Acoust. Soc. Am.
25
(
1
),
138
146
(
1953
).
5.
D. I.
Blokhintsev
, “
Excitation of resonators by air flows
,”
J. Tech. Phys.
XV
(
1-2
),
63
70
(
1945
).
6.
C.
Sondhauss
, “
Ueber die beim Ausströmen der Luft entstehenden Töne
,”
Ann. Phys. Chem.
167
(
2
),
214
240
(
1854
).
7.
V.
Strouhal
, “
Ueber eine besondere Art der Tonerregung
,”
Ann. Phys. Chem.
241
(
10
),
216
251
(
1878
).
8.
R. C.
Chanaud
and
A.
Powell
, “
Some experiments concerning the hole and ring tone
,”
J. Acoust. Soc. Am.
37
(
5
),
902
911
(
1965
).
9.
M. L.
Norton
and
R. E.
Bidgood
, “
Investigating the edgetone amplifier
,”
Fluid Power Int.
34
(
402
),
47
51
(
1969
).
10.
D.
Rockwell
and
E.
Naudascher
, “
Review—Self-sustaining oscillations of flow past cavities
,”
J. Fluids Eng.
100
(
2
),
152
165
(
1978
).
11.
F.
Ghanadi
,
M.
Arjomandi
,
B.
Cazzolato
, and
A.
Zander
, “
Interaction of a flow-excited Helmholtz resonator with a grazing turbulent boundary layer
,”
Exp. Therm. Fluid Sci.
58
,
80
92
(
2014
).
12.
G. J.
Bennett
,
D. B.
Stephens
, and
F. R.
Verdugo
, “
Resonant mode characterisation of a cylindrical Helmholtz cavity excited by a shear layer
,”
J. Acoust. Soc. Am.
141
(
1
),
7
18
(
2017
).
13.
S. A.
Elder
,
T. M.
Farabee
, and
F. C.
DeMetz
, “
Mechanisms of flow-excited cavity tones at low Mach number
,”
J. Acoust. Soc. Am.
72
(
2
),
532
549
(
1982
).
14.
R.
Khosropour
and
P.
Millet
, “
Excitation of a Helmholtz resonator by an air jet
,”
J. Acoust. Soc. Am.
88
(
3
),
1211
1221
(
1990
).
15.
S.
Ziada
, “
Feedback control of globally unstable flows: Impinging shear flows
,”
J Fluids Struct.
9
(
8
),
907
923
(
1995
).
16.
N.
Fujisawa
,
Y.
Takizawa
,
T.
Kohno
, and
S.
Tomimatsu
, “
Active control of flow oscillations in jet-wedge system by acoustic feedback
,”
J. Fluids Struct.
19
(
1
),
111
122
(
2004
).
17.
T. M.
Faure
,
P.
Adrianos
,
F.
Lusseyran
, and
L.
Pastur
, “
Visualizations of the flow inside an open cavity at medium range Reynolds numbers
,”
Exp. Fluids
42
(
2
),
169
184
(
2007
).
18.
F.
Tuerke
,
L. R.
Pastur
,
D.
Sciamarella
,
F.
Lusseyran
, and
G.
Artana
, “
Experimental study of double-cavity flow
,”
Exp. Fluids
58
(
7
),
76
(
2017
).
19.
A.
Goltsman
and
I.
Saushin
, “
Flow pattern of double-cavity flow at high Reynolds number
,”
Phys. Fluids
31
(
6
),
065101
(
2019
).
20.
S.
Ziada
,
M.
Bolduc
, and
P.
Lafon
, “
Flow-excited resonance of diametral acoustic modes in ducted rectangular cavities
,”
AIAA J.
55
(
11
),
3817
3830
(
2017
).
21.
S.
Sami
and
C.
Anderson
, “
Helmholtz oscillator for the self-modulation of a jet
,” in
Proceedings of 7th International symposium on jet cutting technology
(
BHRA, Cranfield, Bedford, England, Paper B4
,
1984
), pp.
91
98
.
22.
S.
Yu
, “
Wind tunnel study on vortex-induced Helmholtz resonance excited by oblique flow
,”
Exp. Therm. Fluid Sci.
74
,
207
219
(
2016
).
23.
C.
Tang
,
J.
Pei
, and
D.
Hu
, “
Experimental study on dynamic characteristics of self-excited oscillation pulsed jet
,”
Adv. Mater. Res.
937
,
624
631
(
2014
).
24.
X.
Dai
,
X.
Jing
, and
X.
Sun
, “
Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments
,”
Phys. Fluids
27
(
5
),
057102
(
2015
).
25.
C.
Segoufin
,
B.
Fabre
,
M. P.
Verge
,
A.
Hirschberg
, and
A. P. J.
Wijnands
, “
Experimental study of the influence of the mouth geometry on sound production in a recorder-like instrument: Windway length and chamfers
,”
Acustica
86
(
4
),
649
661
(
2000
).
26.
C.
Segoufin
,
B.
Fabre
, and
L.
de Lacombe
, “
Experimental investigation of the flue channel geometry influence on edge-tone oscillations
,”
Acta Acust. Acust.
90
(
5
),
966
975
(
2004
).
27.
I.
Vaik
and
G.
Paál
, “
Mode switching and hysteresis in the edge tone
,”
J. Phys.: Conf. Ser.
268
,
012031
(
2011
).
28.
F.
Krüger
and
E.
Schmidtke
, “
Theorie der Spalttöne
,”
Ann. Phys.
365
,
701
(
1919
).
29.
T.
Morel
, “
Experimental study of a jet-driven Helmholtz oscillator
,”
J. Fluids Eng.
101
(
3
),
383
390
(
1979
).
30.
A. A.
Abdrashitov
,
E. A.
Marfin
, and
D. V.
Chachkov
, “
Experimental study of a borehole acoustic radiator with a ring in a long cylindrical chamber
,”
Acoust. Phys.
64
(
2
),
237
244
(
2018
).
31.
A. A.
Abdrashitov
,
E. A.
Marfin
,
D. V.
Chachkov
, and
V. M.
Chefanov
, “
Effect of nozzle shape on amplitude of well acoustic emitter generation
,”
Acoust. Phys.
64
(
4
),
492
502
(
2018
).
32.
U.
Ingard
, “
On the theory and design of acoustical resonators
,”
J. Acoust. Soc. Am.
25
(
6
),
1037
1061
(
1953
).
33.
R.
Ma
,
P. E.
Slaboch
, and
S. C.
Morris
, “
Fluid mechanics of the flow-excited Helmholtz resonator
,”
J. Fluid Mech.
623
,
1
26
(
2009
).
34.
I. E.
Idelchik
,
Handbook of Hydraulic Resistance
(
Publishing House Engineering
,
1992
).
35.
V. I.
Kondratiev
and
T. I.
Nazarenko
, “
Wedge tone and its amplification
,”
Aeroacoustics
(
Publishing House Science
,
1980
), pp.
112
117
(in Russian).
36.
T. V.
Artemyeva
,
T. M.
Lysenko
,
A. N.
Rumyantseva
, and
S. P.
Stesin
,
Hydraulics, Hydraulic Machines and Hydraulic Pneumatic Drives
(
Academy Publishing Center Academy
,
Moscow, Russia
,
2005
), Vol. 336, ISBN: 978-5-7695-3922-0 (in Russian).
37.
V. M.
Molochnikov
,
N. I.
Mikheev
,
A. N.
Mikheev
,
A. A.
Paereliy
,
N. S.
Dushin
, and
O. A.
Dushina
, “
SIV measurements of flow structure in the near wake of a circular cylinder at Re = 3900
,”
Fluid Dyn. Res.
51
,
055505
(
2019
).
You do not currently have access to this content.