A new arrangement of splitter plates has been proposed for the mitigation of aeroacoustic noise generated by the two-dimensional laminar flow over a square cylinder at the Reynolds number Re = 100 and the Mach number M = 0.2. The proposed arrangement involves a pair of cowl plates (arc-shaped splitter plates) symmetrically positioned on either side of the wake center-line near the rear corners of the square cylinder. Direct numerical simulations have been carried out to analyze the nature of flow and flow induced sound fields. Unsteady, two-dimensional, compressible fluid flow equations are solved using high-resolution, space–time accurate, dispersion relation preserving schemes. Simulations have been performed for various radial locations of the cowl plates. It is observed that the maximum reduction in sound pressure level of around 24 dB is possible using the proposed cylinder and cowl plate arrangement. Based on the observed directivity patterns, we have classified the sound fields into three different regions.

1.
H.
Jiang
and
L.
Cheng
, “
Hydrodynamic characteristics of flow past a square cylinder at moderate Reynolds numbers
,”
Phys. Fluids
30
,
104107
(
2018
).
2.
V.
Strouhal
, “
Ueber eine besondere art der tonerregung
,”
Ann. Phys. Chem.
241
,
216
251
(
1878
).
3.
M. J.
Lighthill
, “
On sound generated aerodynamically I. General theory
,”
Proc. R. Soc. London, Ser. A
221
,
564
587
(
1952
).
4.
O.
Inoue
and
N.
Hatakeyama
, “
Sound generation by a two-dimensional circular cylinder in a uniform flow
,”
J. Fluid Mech.
471
,
285
314
(
2002
).
5.
N.
Curle
, “
The influence of solid boundaries upon aerodynamic sound
,”
Proc. R. Soc. London, Ser. A
231
,
505
514
(
1955
).
6.
O.
Inoue
and
Y.
Hattori
, “
Sound generation by shock-vortex interactions
,”
J. Fluid Mech.
380
,
81
116
(
1999
).
7.
A.
Powell
, “
Theory of vortex sound
,”
J. Acoust. Soc. Am.
36
,
177
195
(
1964
).
8.
J. H.
Gerrard
, “
The mechanics of the formation region of vortices behind bluff bodies
,”
J. Fluid Mech.
25
,
401
413
(
1966
).
9.
E. A.
Anderson
and
A. A.
Szewczyk
, “
Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations
,”
Exp. Fluids
23
,
161
174
(
1997
).
10.
H.
Choi
,
W.-P.
Jeon
, and
J.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid Mech.
40
,
113
139
(
2008
).
11.
S.
Rashidi
,
M.
Hayatdavoodi
, and
J. A.
Esfahani
, “
Vortex shedding suppression and wake control: A review
,”
Ocean Eng.
126
,
57
80
(
2016
).
12.
P. J.
Strykowski
and
K. R.
Sreenivasan
, “
On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers
,”
J. Fluid Mech.
218
,
71
107
(
1990
).
13.
F.
Giannetti
and
P.
Luchini
, “
Structural sensitivity of the first instability of the cylinder wake
,”
J. Fluid Mech.
581
,
167
197
(
2007
).
14.
P.
Meliga
,
G.
Pujals
, and
É.
Serre
, “
Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability
,”
Phys. Fluids
24
,
061701
(
2012
).
15.
P.
Meliga
,
E.
Boujo
,
G.
Pujals
, and
F.
Gallaire
, “
Sensitivity of aerodynamic forces in laminar and turbulent flow past a square cylinder
,”
Phys. Fluids
26
,
104101
(
2014
).
16.
A.
Roshko
, “
On the drag and shedding frequency of 2D bluff bodies
,” NACA Technical Report TN 3169 22,
1954
, pp.
124
132
.
17.
C. J.
Apelt
,
G. S.
West
, and
A. A.
Szewczyk
, “
The effects of wake splitter plates on the flow past a circular cylinder in the range 104 < R < 5 × 104
,”
J. Fluid Mech.
61
(
1
),
187
198
(
1973
).
18.
K.
Kwon
and
H.
Choi
, “
Control of laminar vortex shedding behind a circular cylinder using splitter plates
,”
Phys. Fluids
8
,
479
486
(
1996
).
19.
D.
Serson
,
J. R.
Meneghini
,
B. S.
Carmo
,
E. V.
Volpe
, and
R. S.
Gioria
, “
Wake transition in the flow around a circular cylinder with a splitter plate
,”
J. Fluid Mech.
755
,
582
602
(
2014
).
20.
G. R. S.
Assi
,
P. W.
Bearman
, and
N.
Kitney
, “
Low drag solutions for suppressing vortex-induced vibration of circular cylinders
,”
J. Fluids Struct.
25
,
666
675
(
2009
).
21.
G. R. S.
Assi
and
P. W.
Bearman
, “
Transverse galloping of circular cylinders fitted with solid and slotted splitter plates
,”
J. Fluids Struct.
54
,
263
280
(
2015
).
22.
X.
Sun
,
C. S.
Suh
,
Z.-H.
Ye
, and
B.
Yu
, “
Dynamics of a circular cylinder with an attached splitter plate in laminar flow: A transition from vortex-induced vibration to galloping
,”
Phys. Fluids
32
,
027104
(
2020
).
23.
X.
Sun
,
Z.
Ye
,
J.
Li
,
K.
Wen
, and
H.
Tian
, “
Forced convection heat transfer from a circular cylinder with a flexible fin
,”
Int. J. Heat Mass Transfer
128
,
319
334
(
2019
).
24.
R.
Wang
,
Y.
Bao
,
D.
Zhou
,
H.
Zhu
,
H.
Ping
,
Z.
Han
,
D.
Serson
, and
H.
Xu
, “
Flow instabilities in the wake of a circular cylinder with parallel dual splitter plates attached
,”
J. Fluid Mech.
874
,
299
338
(
2019
).
25.
M. S. M.
Ali
,
C. J.
Doolan
, and
V.
Wheatley
, “
The sound generated by a square cylinder with a splitter plate at low Reynolds number
,”
J. Sound Vib.
330
,
3620
3635
(
2011
).
26.
M. S. M.
Ali
,
C. J.
Doolan
, and
V.
Wheatley
, “
Aeolian tones generated by a square cylinder with a detached flat plate
,”
AIAA J.
51
,
291
301
(
2013
).
27.
K.
Karthik
,
M.
Vishnu
,
S.
Vengadesan
, and
S. K.
Bhattacharyya
, “
Optimization of bluff bodies for aerodynamic drag and sound reduction using CFD analysis
,”
J. Wind Eng. Ind. Aerodyn.
174
,
133
140
(
2018
).
28.
D.
You
,
H.
Choi
,
M.-R.
Choi
, and
S.-H.
Kang
, “
Control of flow-induced noise behind a circular cylinder using splitter plates
,”
AIAA J.
36
,
1961
1967
(
1998
).
29.
K.
Karthik
,
S.
Vengadesan
, and
S. K.
Bhattacharyya
, “
Prediction of flow induced sound generated by cross flow past finite length circular cylinders
,”
J. Acoust. Soc. Am.
143
,
260
270
(
2018
).
30.
J. E. F.
Williams
and
D. L.
Hawkings
, “
Sound generated by turbulence and surfaces in arbitrary motion
,”
Philos. Trans. R. Soc., A
264
,
321
342
(
1969
).
31.
J. C.
Hardin
and
D. S.
Pope
, “
An acoustic/viscous splitting technique for computational aeroacoustics
,”
Theor. Comput. Fluid Dyn.
6
,
323
340
(
1994
).
32.
S. A.
Slimon
,
D. W.
Davis
, and
M. C.
Soteriou
, “
Computational aeroacoustics simulations using the expansion about incompressible flow approach
,”
AIAA J.
37
,
409
416
(
1999
).
33.
T.-H.
Zheng
,
G. H.
Vatistas
, and
A.
Povitsky
, “
Sound generation by a street of vortices in a nonuniform flow
,”
Phys. Fluids
19
,
037103
(
2007
).
34.
T.-H.
Zheng
,
A.
Povitsky
, and
G. H.
Vatistas
, “
Vortex-generated sound in flow about spinning cylinders
,”
J. Comput. Acoust.
16
,
577
599
(
2008
).
35.
T.
Colonius
,
S. K.
Lele
, and
P.
Moin
, “
The scattering of sound waves by a vortex: Numerical simulations and analytical solutions
,”
J. Fluid Mech.
260
,
271
298
(
1994
).
36.
T.
Colonius
,
S. K.
Lele
, and
P.
Moin
, “
Sound generation in a mixing layer
,”
J. Fluid Mech.
330
,
375
409
(
1997
).
37.
B. E.
Mitchell
,
S. K.
Lele
, and
P.
Moin
, “
Direct computation of the sound from a compressible co-rotating vortex pair
,”
J. Fluid Mech.
285
,
181
202
(
1995
).
38.
B. E.
Mitchell
,
S. K.
Lele
, and
P.
Moin
, “
Direct computation of the sound generated by vortex pairing in an axisymmetric jet
,”
J. Fluid Mech.
383
,
113
142
(
1999
).
39.
R.-H.
Ma
,
D.-A.
Wang
,
T.-H.
Hsueh
, and
C.-Y.
Lee
, “
A MEMS-based flow rate and flow direction sensing platform with integrated temperature compensation scheme
,”
Sensors
9
,
5460
5476
(
2009
).
40.
G.
Karniadakis
,
A.
Beskok
, and
N.
Aluru
,
Microflows and Nanoflows: Fundamentals and Simulation
(
Springer Science and Business Media
,
2006
), Vol. 29.
41.
T. K.
Sengupta
,
Y. G.
Bhumkar
,
M. K.
Rajpoot
,
V. K.
Suman
, and
S.
Saurabh
, “
Spurious waves in discrete computation of wave phenomena and flow problems
,”
Appl. Math. Comput.
218
,
9035
9065
(
2012
).
42.
K. A.
Hoffman
and
S. T.
Chiang
,
Computational Fluid Dynamics
(
Engineering Education System
,
2000
), Vol. II.
43.
B.
Mahato
,
N.
Ganta
, and
Y. G.
Bhumkar
, “
Direct simulation of sound generation by a two-dimensional flow past a wedge
,”
Phys. Fluids
30
,
096101
(
2018
).
44.
B.
Mahato
,
G.
Naveen
, and
Y. G.
Bhumkar
, “
Computation of aeroacoustics and fluid flow problems using a novel dispersion relation preserving scheme
,”
J. Comput. Acoust.
26
(
4
),
1850063
(
2019
).
45.
N.
Ganta
,
B.
Mahato
, and
Y. G.
Bhumkar
, “
Analysis of sound generation by flow past a circular cylinder performing rotary oscillations using direct simulation approach
,”
Phys. Fluids
31
,
026104
(
2019
).
46.
N.
Ganta
,
B.
Mahato
, and
Y. G.
Bhumkar
, “
Prediction of the aerodynamic sound generated due to flow over a cylinder performing combined steady rotation and rotary oscillations
,”
J. Acoust. Soc. Am.
147
,
325
336
(
2020
).
47.
B.
Mahato
,
N.
Ganta
, and
Y. G.
Bhumkar
, “
Numerical investigation of sound generation due to laminar flow past elliptic cylinders
,”
Numer. Math.: Theor. Methods Appl.
13
(
1
),
27
62
(
2020
).
48.
J.
Pradhan
,
S.
Jindal
,
B.
Mahato
, and
Y. G.
Bhumkar
, “
Joint optimization of the spatial and the temporal discretization scheme for accurate computation of acoustic problems
,”
Commun. Comput. Phys.
24
,
408
434
(
2018
).
49.
K. A.
Hoffmann
and
S. T.
Chiang
,
Computational Fluid Dynamics
(
Engineering Education System
,
Wichita, KS, USA
,
2000
), Vol. I.
50.
N.
Ganta
,
B.
Mahato
, and
Y. G.
Bhumkar
, “
Modulation of sound waves for flow past a rotary oscillating cylinder in a non-synchronous region
,”
Phys. Fluids
31
,
096103
(
2019
).
51.
A.
Sohankar
,
C.
Norberg
, and
L.
Davidson
, “
Low-Reynolds-number flow around a square cylinder at incidence: Study of blockage, onset of vortex shedding and outlet boundary condition
,”
Int. J. Numer. Methods Fluids
26
,
39
56
(
1998
).
52.
H.
Bai
and
M. M.
Alam
, “
Dependence of square cylinder wake on Reynolds number
,”
Phys. Fluids
30
,
015102
(
2018
).
53.
J. D.
Buntine
and
D. I.
Pullin
, “
Merger and cancellation of strained vortices
,”
J. Fluid Mech.
205
,
263
295
(
1989
).
54.
A.
Schaffer
, “
A study of vortex cancellation
,”
J. Aerosp. Sci.
27
,
193
196
(
1960
).
55.
H.
Yokoyama
and
A.
Iida
, “
Direct and hybrid aeroacoustic simulations around a rectangular cylinder
,”
Numerical Simulations in Engineering and Science
(IntechOpen,
2017
).
56.
Y. S. K.
Liow
,
B. T.
Tan
,
M. C.
Thompson
, and
K.
Hourigan
, “
Sound generated in laminar flow past a two-dimensional rectangular cylinder
,”
J. Sound Vib.
295
,
407
427
(
2006
).
57.
C.
Cheong
,
P.
Joseph
,
Y.
Park
, and
S.
Lee
, “
Computation of aeolian tone from a circular cylinder using source models
,”
Appl. Acoust.
69
,
110
126
(
2008
).
You do not currently have access to this content.