In this study, inviscid linear stability theory is used to investigate the compressibility effects of Batchelor vortices. The growth rates are obtained from asymptotic analysis with large wavenumbers, and it is shown that the growth of disturbances is affected largely by both the Mach number and the axial velocity deficit. From the maximum growth rates for various base flow conditions, the growth properties of Batchelor vortices are summarized reasonably by using a convective Mach number based on two relative Mach numbers for three-dimensional disturbances. In addition, the ratio of the circulation and velocity deficit at the maximum growth rate is closely related to the growth rate as a function of the convective Mach number because the correlation between the ratio and the growth rate is high when the Mach number is less than unity. Therefore, the compressibility effects, which are expressed as the relation between the growth property and the convective Mach number, are estimated simply from only the base flows (circulation and velocity deficit) in Batchelor vortices.

1.
E. J.
Gutmark
,
K. C.
Schadow
, and
K. H.
Yu
, “
Mixing enhancement in supersonic free shear flows
,”
Annu. Rev. Fluid Mech.
27
,
375
(
1995
).
2.
J.
Urzay
, “
Supersonic combustion in air-breathing propulsion systems for hypersonic flight
,”
Annu. Rev. Fluid Mech.
50
,
593
(
2018
).
3.
T.
Hiejima
, “
Effects of streamwise vortex breakdown on supersonic combustion
,”
Phys. Rev. E
93
,
043115
(
2016
).
4.
T.
Hiejima
and
T.
Oda
, “
Shockwave effects on supersonic combustion using hypermixer struts
,”
Phys. Fluids
32
,
016104
(
2020
).
5.
D.
Bogdanoff
, “
Compressibility effects in turbulent shear layers
,”
AIAA J.
21
,
926
(
1983
).
6.
D.
Papamoschou
and
A.
Roshko
, “
The compressible turbulent shear layer: An experimental study
,”
J. Fluid Mech.
197
,
453
(
1988
).
7.
N. T.
Clemens
and
M. G.
Mungal
, “
Large-scale structure and entrainment in the supersonic mixing layer
,”
J. Fluid Mech.
284
,
171
(
1995
).
8.
P. E.
Dimotakis
,
High Speed Flight Propulsion Systems
, Progress in Astronautics and Aeronautics, edited by
S.
Murthy
and
E.
Curran
(
AIAA
,
Washington
,
1991
), Vol. 137, Chap. 5, pp.
265
340
.
9.
M. D.
Slessor
,
M.
Zhuang
, and
P. E.
Dimotakis
, “
Turbulent shear-layer mixing: Growth-rate compressibility scaling
,”
J. Fluid Mech.
414
,
35
(
2000
).
10.
S.
Barre
,
C.
Quine
, and
J. P.
Dussauge
, “
Compressibility effects on the structure of supersonic mixing layers: Experimental results
,”
J. Fluid Mech.
259
,
47
(
1994
).
11.
A. W.
Vreman
,
N. D.
Sandham
, and
K. H.
Luo
, “
Compressible mixing layer growth rate and turbulence characteristics
,”
J. Fluid Mech.
320
,
235
(
1996
).
12.
J. B.
Freund
,
S. K.
Lele
, and
P.
Moin
, “
Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate
,”
J. Fluid Mech.
421
,
229
(
2000
).
13.
C.
Pantano
and
S.
Sarkar
, “
A study of compressibility effects in the high-speed turbulent shear layer using direct simulation
,”
J. Fluid Mech.
451
,
329
(
2002
).
14.
M. V.
Morkovin
, “
Mach number effects on free and wall turbulent structures in light of instability flow interactions
,” in
Studies in Turbulence
, edited by
S. S. T. B.
Gatski
and
C. G.
Speziale
(
Springer
,
1992
), pp.
269
284
.
15.
S. K.
Lele
, “
Compressibility effects on turbulence
,”
Annu. Rev. Fluid Mech.
26
,
211
(
1994
).
16.
T.
Hiejima
, “
Linear stability analysis on supersonic streamwise vortices
,”
Phys. Fluids
25
,
114103
(
2013
).
17.
T.
Hiejima
, “
Stability of compressible streamwise vortices
,”
Phys. Fluids
27
,
074107
(
2015
).
18.
T.
Hiejima
, “
Compressibility effects of supersonic Batchelor vortices
,”
Phys. Rev. Fluids
4
,
093903
(
2019
).
19.
G. A.
Gerolymos
and
I.
Vallet
, “
Pressure, density, temperature and entropy fluctuations in compressible turbulent plane channel flow
,”
J. Fluid Mech.
757
,
701
(
2014
).
20.
L. M.
Mack
, “
Boundary layer stability theory
,” JPL Report No. 900–277,
1969
.
21.
J. W.
Naughton
,
L. N.
Cattafesta
, and
G. S.
Settles
, “
An experimental study of compressible turbulent mixing enhancement in swirling jets
,”
J. Fluid Mech.
330
,
271
(
1997
).
22.
M. J.
Day
,
W. C.
Reynolds
, and
N. N.
Mansour
, “
The structure of the compressible reacting mixing layer: Insights from linear stability analysis
,”
Phys. Fluids
10
,
993
(
1998
).
23.
P.
Billant
and
F.
Gallaire
, “
A unified criterion for the centrifugal instabilities of vortices and swirling jets
,”
J. Fluid Mech.
734
,
5
(
2013
).
24.
M.
Abid
, “
Nonlinear mode selection in a model of trailing line vortices
,”
J. Fluid Mech.
605
,
19
(
2008
).
25.
C. J.
Heaton
,
J. W.
Nichols
, and
P. J.
Schmid
, “
Global linear stability of the non-parallel Batchelor vortex
,”
J. Fluid Mech.
629
,
139
(
2009
).
26.
T.
Hiejima
, “
Helicity effects on inviscid instability in Batchelor vortices
,”
J. Fluid Mech.
897
,
A37
(
2020
).
27.
M.
Lessen
,
P. J.
Singh
, and
F.
Paillet
, “
The stability of a trailing line vortex. Part 1. Inviscid theory
,”
J. Fluid Mech.
63
,
753
(
1974
).
28.
G. K.
Batchelor
, “
Axial flow in trailing line vortices
,”
J. Fluid Mech.
20
,
645
(
1964
).
29.
T.
Hiejima
, “
Streamwise vortex breakdown in supersonic flows
,”
Phys. Fluids
29
,
054102
(
2017
).
30.
T.
Hiejima
, “
Onset conditions for vortex breakdown in supersonic flows
,”
J. Fluid Mech.
840
,
R1
(
2018
).
31.
M. A.
Herrada
,
M.
Pérez-Saborid
, and
A.
Barrero
, “
Vortex breakdown in compressible flows in pipes
,”
Phys. Fluids
15
,
2208
(
2003
).
32.
Z.
Rusak
,
J. J.
Choi
, and
J.-H.
Lee
, “
Bifurcation and stability of near-critical compressible swirling flows
,”
Phys. Fluids
19
,
114107
(
2007
).
33.
L. N.
Cattafesta
and
G. S.
Settles
, “
Experiments on shock/vortex interaction
,” AIAA Paper No. 92–0315,
1992
.
34.
S.
Leblanc
and
A.
Le Duc
, “
The unstable spectrum of swirling gas flows
,”
J. Fluid Mech.
537
,
433
(
2005
).
35.
B.
Di Pierro
and
M.
Abid
, “
Instabilities of variable-density swirling flows
,”
Phys. Rev. E
82
,
046312
(
2010
).
36.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer
,
2001
).
37.
K. S.
Eckhoff
and
L.
Storesletten
, “
A note on the stability of steady inviscid helical gas flows
,”
J. Fluid Mech.
89
,
401
(
1978
).
38.
S.
Leibovich
and
K.
Stewartson
, “
A sufficient condition for the instability of columnar vortices
,”
J. Fluid Mech.
126
,
335
(
1983
).
39.
N. D.
Sandham
and
W. C.
Reynolds
, “
Three-dimensional simulations of large eddies in the compressible mixing layer
,”
J. Fluid Mech.
224
,
133
(
1991
).
You do not currently have access to this content.