Interacting supersonic streamwise vortices have been investigated as a means to enhance mixing at supersonic velocities. However, the turbulence dynamics associated with this class of flow has been left largely unexplored despite turbulence playing a major role in the achievement of molecular mixing. For this reason, the process of turbulent kinetic energy production in interacting supersonic streamwise vortices is investigated in this work. Specifically, the link between the mean flow motion and turbulence, represented by the production term of the turbulent transport equation, is analyzed. An approach is proposed in which the mean flow strain rates can be cast such that their intensity and morphology properly couple with the requirements imposed by the Reynolds stresses that, in the framework of this work, are shown to be intimately linked with the resulting plume morphology. The analysis is leveraged for the design of a mode of vortex interaction targeted to maintain a positive production of turbulent kinetic energy in the downstream evolution. The resulting configuration was experimentally investigated in a Mach 2.5 flow by stereoscopic particle image velocimetry. The results from these experiments show that the turbulence production remained positive and sustained turbulence levels, a unique result in the available literature. The role of turbulence anisotropy and the principal direction of negative planar strain rates are highlighted in detail in this work.

1.
D.
Papamoschou
and
A.
Roshko
, “
The compressible turbulent shear layer: An experimental study
,”
J. Fluid Mech.
197
,
453
477
(
1988
).
2.
D. W.
Bogdanoff
, “
Compressibility effects in turbulent shear layers
,”
AIAA J.
21
,
926
927
(
1983
).
3.
M.
Zhuang
,
T.
Kubota
, and
P. E.
Dimotakis
, “
Instability of inviscid, compressible free shear layers
,”
AIAA J.
28
,
1728
1733
(
1990
).
4.
G. S.
Elliott
and
M.
Samimy
, “
Compressibility effects in free shear layers
,”
Phys. Fluids A
2
,
1231
1240
(
1990
).
5.
E. J.
Gutmark
,
K. C.
Schadow
, and
K. H.
Yu
, “
Mixing enhancement in supersonic free shear flows
,”
Annu. Rev. Fluid Mech.
27
,
375
417
(
1995
).
6.
I. A.
Waitz
,
Y. J.
Qiu
,
T. A.
Manning
,
A. K. S.
Fung
,
J. K.
Elliot
,
J. M.
Kerwin
,
J. K.
Krasnodebski
,
M. N.
O’Sullivan
,
D. E.
Tew
,
E. M.
Greitzer
 et al, “
Enhanced mixing with streamwise vorticity
,”
Prog. Aerosp. Sci.
33
,
323
351
(
1997
).
7.
J. W.
Naughton
,
L. N.
Cattafesta
 III
, and
G. S.
Settles
, “
An experimental study of compressible turbulent mixing enhancement in swirling jets
,”
J. Fluid Mech.
330
,
271
305
(
1997
).
8.
N. A.
Chigier
and
A.
Chervinsky
, “
Experimental investigation of swirling vortex motion in jets
,”
J. Appl. Mech.
34
,
443
451
(
1967
).
9.
J.
Swithebank
and
N. A.
Chigier
, “
Vortex mixing for supersonic combustion
,”
Symp. (Int.) Combust.
12
,
1153
1162
(
1969
).
10.
J. M.
Donohue
and
J. C.
McDaniel
, “
Complete three-dimensional multiparameter mapping of a supersonic ramp fuel injector flowfield
,”
AIAA J.
34
,
455
462
(
1996
).
11.
S.
Aso
,
Y.
Yamane
,
Y.
Ando
,
K.
Umii
,
K.
Tokunaga
,
K.
Sakata
 et al, “
A study on supersonic mixing flowfield with swept ramp injectors
,” in
35th Aerospace Sciences Meeting and Exhibit
(
American Institute of Aeronautics and Astronautics
,
1997
), p.
397
.
12.
M. P.
Wilson
,
R. D. W.
Bowersox
, and
D. D.
Glawe
, “
Experimental investigation of the role of downstream ramps on a supersonic injection plume
,”
J. Propul. Power
15
,
432
439
(
1999
).
13.
J.
Schumacher
, “
Numerical simulation of cantilevered ramp injector flow fields for hypervelocity fuel/air mixing enhancement
,” Ph.D. thesis,
National Library of Canada (Bibliothèque nationale du Canada)
,
2000
.
14.
S.
Koike
,
K.
Suzuki
,
E.
Kitamura
,
M.
Hirota
,
K.
Takita
,
G.
Masuya
, and
M.
Matsumoto
, “
Measurement of vortices and shock waves produced by ramp and twin jets
,”
J. Propul. Power
22
,
1059
1067
(
2006
).
15.
A.
Kondo
,
S.
Sakaue
,
H.
Hayase
, and
T.
Arai
, “
Effect of expansion ramp angle on supersonic mixing using streamwise vortices
,” in
16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference
(
American Institute of Aeronautics and Astronautics
,
2009
), p.
7314
.
16.
J. C.
Doster
,
P. I.
King
,
M. R.
Gruber
,
C. D.
Carter
,
M. D.
Ryan
, and
K.-Y.
Hsu
, “
In-stream hypermixer fueling pylons in supersonic flow
,”
J. Propul. Power
25
,
885
901
(
2009
).
17.
F.
Spaid
and
E.
Zukoski
, “
Secondary injection of gases into a supersonic flow
,”
AIAA J.
2
,
1689
1696
(
1964
).
18.
S.
Aso
,
M.
Kawai
, and
Y.
Ando
, “
Experimental study on mixing phenomena in supersonic flows with slotinjection
,” in
29th Aerospace Sciences Meeting
(
American Institute of Aeronautics and Astronautics
,
1991
), p.
16
.
19.
F.
Billig
and
J.
Schetz
, “
Analysis of penetration and mixing of gas jets in supersonic cross flow
,” in
4th Symposium on Multidisciplinary Analysis and Optimization
(
American Institute of Aeronautics and Astronautics
,
1992
), p. –
5061
.
20.
S. J.
Beresh
,
J. F.
Henfling
,
R. J.
Erven
, and
R. W.
Spillers
, “
Penetration of a transverse supersonic jet into a subsonic compressible crossflow
,”
AIAA J.
43
,
379
389
(
2005
).
21.
F.
Marble
,
E.
Zukoski
,
J.
Jacobs
, and
G.
Hendricks
, “
Shock enhancement and control of hypersonic mixing and combustion
,” in
26th Joint Propulsion Conference
(
American Institute of Aeronautics and Astronautics
,
1990
), p.
1981
.
22.
S. J.
Beresh
,
J. F.
Henfling
,
R. J.
Erven
, and
R. W.
Spillers
, “
Turbulent characteristics of a transverse supersonic jet in a subsonic compressible crossflow
,”
AIAA J.
43
,
2385
2394
(
2005
).
23.
C. T.
Smith
and
C. P.
Goyne
, “
Application of stereoscopic particle image velocimetry to a dual-mode scramjet
,”
J. Propul. Power
27
,
1178
1185
(
2011
).
24.
B. E.
Rice
,
C. P.
Goyne
, and
J. C.
McDaniel
, “
Seeding bias in particle image velocimetry applied to dual-mode scramjet
,”
J. Propul. Power
31
,
1393
1403
(
2015
).
25.
F.
Vergine
and
L.
Maddalena
, “
Stereoscopic particle image velocimetry measurements of supersonic, turbulent, and interacting streamwise vortices: Challenges and application
,”
Prog. Aerosp. Sci.
66
,
1
16
(
2014
).
26.
C.
Ground
,
F.
Vergine
, and
L.
Maddalena
, “
The effect of vortex merging and non-merging on the transfer of modal turbulent kinetic energy content
,”
Exp. Fluids
57
,
131
(
2016
).
27.
L.
Maddalena
,
F.
Vergine
, and
M.
Crisanti
, “
Vortex dynamics studies in supersonic flow: Merging of co-rotating streamwise vortices
,”
Phys. Fluids
26
,
046101
(
2014
).
28.
D.
Viganò
and
L.
Maddalena
, “
A numerical method for the solution of supersonic streamwise vortex dynamics
,”
Aerosp. Sci. Technol.
79
,
310
(
2018
).
29.
V.
Gopal
and
L.
Maddalena
, “
Influence of vorticity distribution on singularities in linearized supersonic flow
,”
Phys. Fluids
30
,
056105
(
2018
).
30.
F.
Vergine
,
C.
Ground
, and
L.
Maddalena
, “
Turbulent kinetic energy decay in supersonic streamwise interacting vortices
,”
J. Fluid Mech.
807
,
353
385
(
2016
).
31.
P. C.
Valente
and
J. C.
Vassilicos
, “
The decay of turbulence generated by a class of multiscale grids
,”
J. Fluid Mech.
687
,
300
340
(
2011
).
32.
F.
Vergine
and
L.
Maddalena
, “
Study of two supersonic streamwise vortex interactions in a Mach 2.5 flow: Merging and no merging configurations
,”
Phys. Fluids
27
,
076102
(
2015
).
33.
P.
Bradshaw
, “
Compressible turbulent shear layers
,”
Annu. Rev. Fluid Mech.
9
,
33
52
(
1977
).
34.
F.
Vergine
,
C.
Ground
, and
L.
Maddalena
, “
Strut injectors for scramjets: Total pressure losses in two streamwise vortex interactions
,”
J. Propul. Power
33
,
1140
(
2017
).
35.
L. H.
Benedict
and
R. D.
Gould
, “
Towards better uncertainty estimates for turbulence statistics
,”
Exp. Fluids
22
,
129
136
(
1996
).
You do not currently have access to this content.