Wavy cylinders have been recognized as a type of effective flow control device in previous studies. In this paper, we investigate the wake dynamics of an optimally designed wavy cylinder that completely suppresses the Kármán vortex shedding. Such a wavy cylinder is forced to oscillate with a sinusoidal motion in the crossflow direction. Examination of the lift force spectrum reveals that for a fixed forcing amplitude, a critical forcing frequency exists, below which the flow control effectiveness of the wavy cylinder is retained and beyond which the inherent vortex shedding resurrects. The resurrected unsteady vortex shedding can persist even without sustained forcing. This indicates that in addition to the steady state developed from uniform initial condition, an oscillatory state exists in the wake of a wavy cylinder if the initial state is sufficiently perturbed. The newly revealed unsteady flow features comparable hydrodynamic performance with the benchmark two-dimensional cylinder. The discovery of the bistable states calls for re-examination of the flow control effectiveness of the wavy cylinder in more complicated inflow conditions.

1.
H.
Choi
,
W.-P.
Jeon
, and
J.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid Mech.
40
,
113
139
(
2008
).
2.
A.
Ahmed
and
B.
Bays-Muchmore
, “
Transverse flow over a wavy cylinder
,”
Phys. Fluids A
4
,
1959
1967
(
1992
).
3.
A.
Ahmed
,
M. J.
Khan
, and
B.
Bays-Muchmore
, “
Experimental investigation of a three-dimensional bluff-body wake
,”
AIAA J.
31
,
559
563
(
1993
).
4.
K.
Lam
,
F. H.
Wang
,
J. Y.
Li
, and
R. M. C.
So
, “
Experimental investigation of the mean and fluctuating forces of wavy (varicose) cylinders in a cross-flow
,”
J. Fluids Struct.
19
,
321
334
(
2004
).
5.
K.
Lam
and
Y. F.
Lin
, “
Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers
,”
J. Fluid Mech.
620
,
195
220
(
2009
).
6.
C.-Y.
Xu
,
L.-W.
Chen
, and
X.-Y.
Lu
, “
Large-eddy simulation of the compressible flow past a wavy cylinder
,”
J. Fluid Mech.
665
,
238
273
(
2010
).
7.
K.
Lam
and
Y. F.
Lin
, “
Large eddy simulation of flow around wavy cylinders at a subcritical Reynolds number
,”
Int. J. Heat Fluid Flow
29
,
1071
1088
(
2008
).
8.
Y. F.
Lin
,
H. L.
Bai
,
M. M.
Alam
,
W. G.
Zhang
, and
K.
Lam
, “
Effects of large spanwise wavelength on the wake of a sinusoidal wavy cylinder
,”
J. Fluids Struct.
61
,
392
409
(
2016
).
9.
C.-Y.
Xu
and
Z.-Q.
Ni
, “
Novel characteristics of wavy cylinder in supersonic turbulent flow
,”
Eur. J. Mech., B Fluids
67
,
158
167
(
2018
).
10.
H. S.
Yoon
,
M. I.
Kim
, and
H. J.
Kim
, “
Reynolds number effects on the flow over a twisted cylinder
,”
Phys. Fluids
31
,
025119
(
2019
).
11.
W.
Hanke
,
M.
Witte
,
L.
Miersch
,
M.
Brede
,
J.
Oeffner
,
M.
Michael
,
F.
Hanke
,
A.
Leder
, and
G.
Dehnhardt
, “
Harbor seal vibrissa morphology suppresses vortex-induced vibrations
,”
J. Exp. Biol.
213
,
2665
2672
(
2010
).
12.
H.
Beem
,
M.
Hildner
, and
M.
Triantafyllou
, “
Calibration and validation of a harbor seal whisker-inspired flow sensor
,”
Smart Mater. Struct.
22
,
014012
(
2012
).
13.
W.
Zhang
,
C.
Dai
,
S. J.
Lee
 et al, “
PIV measurements of the near-wake behind a sinusoidal cylinder
,”
Exp. Fluids
38
,
824
832
(
2005
).
14.
K.
Zhang
,
H.
Katsuchi
,
D.
Zhou
,
H.
Yamada
, and
J.
Lu
, “
Large eddy simulation of flow over inclined wavy cylinders
,”
J. Fluids Struct.
80
,
179
198
(
2018
).
15.
Y.
Hwang
,
J.
Kim
, and
H.
Choi
, “
Stabilization of absolute instability in spanwise wavy two-dimensional wakes
,”
J. Fluid Mech.
727
,
346
378
(
2013
).
16.
K.
Zhang
,
H.
Katsuchi
,
D.
Zhou
,
H.
Yamada
,
T.
Zhang
, and
Z.
Han
, “
Numerical simulation of vortex induced vibrations of a flexibly mounted wavy cylinder at subcritical Reynolds number
,”
Ocean Eng.
133
,
170
181
(
2017
).
17.
G. R. S.
Assi
and
P. W.
Bearman
, “
Vortex-induced vibration of a wavy elliptic cylinder
,”
J. Fluids Struct.
80
,
1
21
(
2018
).
18.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
19.
J.
Carberry
,
J.
Sheridan
, and
D.
Rockwell
, “
Controlled oscillations of a cylinder: Forces and wake modes
,”
J. Fluid Mech.
538
,
31
69
(
2005
).
20.
S.
Kumar
,
Navrose
, and
S.
Mittal
, “
Lock-in in forced vibration of a circular cylinder
,”
Phys. Fluids
28
,
113605
(
2016
).
21.
H.
Jiao
and
G. X.
Wu
, “
Free vibration predicted using forced oscillation in the lock-in region
,”
Phys. Fluids
30
,
113601
(
2018
).
22.
L. K. B.
Li
and
M. P.
Juniper
, “
Lock-in and quasiperiodicity in a forced hydrodynamically self-excited jet
,”
J. Fluid Mech.
726
,
624
655
(
2013
).
23.
A.
Pikovsky
,
J.
Kurths
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
), Vol. 12.
24.
K.
Zhang
,
H.
Katsuchi
,
D.
Zhou
,
H.
Yamada
,
Y.
Bao
,
Z.
Han
, and
H.
Zhu
, “
Numerical study of flow past a transversely oscillating wavy cylinder at Re = 5000
,”
Ocean Eng.
169
,
539
550
(
2018
).
25.
E.
Ferrer
,
J.
de Vicente
, and
E.
Valero
, “
Low cost 3D global instability analysis and flow sensitivity based on dynamic mode decomposition and high-order numerical tools
,”
Int. J. Numer. Methods Fluids
76
,
169
184
(
2014
).
26.
J. H.
Tu
,
C. W.
Rowley
,
D. M.
Luchtenburg
,
S. L.
Brunton
, and
J. N.
Kutz
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
1
,
391
421
(
2014
).
27.
V.
Theofilis
, “
Global linear instability
,”
Annu. Rev. Fluid Mech.
43
,
319
352
(
2011
).
28.
M.
Laroussi
,
M.
Djebbi
, and
M.
Moussa
, “
Triggering vortex shedding for flow past circular cylinder by acting on initial conditions: A numerical study
,”
Comput. Fluids
101
,
194
207
(
2014
).
29.
A.
Khalak
and
C. H. K.
Williamson
, “
Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping
,”
J. Fluids Struct.
13
,
813
851
(
1999
).
30.
H. M.
Blackburn
and
R. D.
Henderson
, “
A study of two-dimensional flow past an oscillating cylinder
,”
J. Fluid Mech.
385
,
255
286
(
1999
).
31.
J.
Mizushima
and
Y.
Ino
, “
Stability of flows past a pair of circular cylinders in a side-by-side arrangement
,”
J. Fluid Mech.
595
,
491
507
(
2008
).
32.
A.
Zebib
, “
Stability of viscous flow past a circular cylinder
,”
J. Eng. Math.
21
,
155
165
(
1987
).
33.
C. P.
Jackson
, “
A finite-element study of the onset of vortex shedding in flow past variously shaped bodies
,”
J. Fluid Mech.
182
,
23
45
(
1987
).
34.
S.
Mittal
and
S.
Singh
, “
Vortex-induced vibrations at subcritical Re
,”
J. Fluid Mech.
534
,
185
194
(
2005
).
35.
J.
Kou
,
W.
Zhang
,
Y.
Liu
, and
X.
Li
, “
The lowest Reynolds number of vortex-induced vibrations
,”
Phys. Fluids
29
,
041701
(
2017
).
36.
W.
Zhang
,
X.
Li
,
Z.
Ye
, and
Y.
Jiang
, “
Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers
,”
J. Fluid Mech.
783
,
72
102
(
2015
).
37.
Navrose
and
S.
Mittal
, “
Lock-in in vortex-induced vibration
,”
J. Fluid Mech.
794
,
565
594
(
2016
).
38.
W.
Yao
and
R. K.
Jaiman
, “
Model reduction and mechanism for the vortex-induced vibrations of bluff bodies
,”
J. Fluid Mech.
827
,
357
393
(
2017
).
You do not currently have access to this content.