This work studies the development of a thermal boundary layer during the laminar-to-turbulent transition process over a concave surface. Direct numerical simulations are performed where the temperature variable is treated as a passive scalar. The laminar flow is perturbed with wall-roughness elements that are able to produce centrifugal instabilities in the form of Görtler vortices with a maximum growth rate. It is found that Görtler vortices are able to greatly modify the surface heat-transfer by generating a spanwise periodic distribution of temperature. Similar to the Görtler momentum boundary layer, elongated mushroom-like structures of low-temperature are generated in the upwash region, whereas in the downwash region, the thermal boundary layer is compressed. Consequently, temperature gradients are increased and decreased in the downwash and upwash regions, respectively, thereby generating an overall enhancement of the heat-transfer rate of ∼400% for the investigated Prandtl numbers (Pr = 0.72, Pr = 1, and Pr = 7.07). This enhancement surpasses the turbulent heat-transfer values during the transitional region, characterized by the development of secondary instabilities. However, downstream, the heat-transfer rate decays to the typical turbulent values. Streamwise evolution of several thermal quantities such as temperature wall-normal distribution, thermal boundary layer thickness, and Stanton number is reported in different regions encountered in the transition process, namely, linear, nonlinear, transition, and fully turbulent regions. These quantities are reported locally at upwash and downwash regions, where they present minima and maxima, as well as globally as spanwise-averaged quantities. Furthermore, it is found that the Reynolds analogy between streamwise-momentum and heat-transfer holds true throughout the whole transition process for the Pr = 1 case. Moreover, the turbulent thermal boundary layer over a concave surface is analyzed in detail for the first time. The viscous sub-layer and the log-law region are described for each investigated Pr. Besides, the root-mean-squared temperature fluctuations are computed, finding that its wall-normal distribution exhibits a higher peak when Pr is increased.

1.
H.
Görtler
, “
Uber eine dreidimensionale instabilitat laminarer grenzschichten an konkaven wanden
,” in
Ges. d. Wiss. Gottingen, Nachr. ad Math
(
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
,
1940
), Vol. 2.
2.
A.
Ducoin
,
M. S.
Shadloo
, and
S.
Roy
, “
Direct numerical simulation of flow instabilities over Savonius style wind turbine blades
,”
Renewable Energy
105
,
374
385
(
2017
).
3.
L. S.
Han
and
W.
Cox
, “
A visual study of turbine blade pressure-side boundary layers
,” in
ASME 1982 International Gas Turbine Conference and Exhibit
(
American Society of Mechanical Engineers Digital Collection
,
1982
).
4.
H. P.
Wang
,
S. J.
Olson
, and
R. J.
Goldstein
, “
Development of Taylor-Görtler vortices over the pressure surface of a turbine blade
,”
J. Heat Transfer
127
,
540
543
(
2005
).
5.
I. E.
Beckwith
and
B. B.
Holley
, “
Görtler vortices and transition in wall boundary layers of two Mach 5 nozzles
,” NASA TP 1869,
1981
, pp.
1
72
.
6.
F.-J.
Chen
,
S. P.
Wilkinson
, and
I. E.
Beckwith
, “
Goertler instability and hypersonic quiet nozzle design
,”
J. Spacecraft Rockets
30
,
170
175
(
1993
).
7.
S.
Mangalam
,
J.
Dagenhart
,
J.
Meyers
, and
T.
Hepner
, “
The Görtler instability on an airfoil
,” in
23rd Aerospace Sciences Meeting
(
AIAA
,
2012
), p.
491
.
8.
H.
Reed
and
W.
Saric
, “
Transition mechanisms for transport aircraft
,” in
38th Fluid Dynamics Conference and Exhibit
(
AIAA
,
2008
), p.
3743
.
9.
S.
Winoto
and
D. S.
Tandiono
, “
Wall shear stress in Görtler vortex boundary layer flow
,”
Phys. Fluids
21
,
084106
(
2009
).
10.
E. J.
Hopfinger
,
A.
Kurniawan
,
W. H.
Graf
, and
U.
Lemmin
, “
Sediment erosion by Görtler vortices: The scour-hole problem
,”
J. Fluid Mech.
520
,
327
342
(
2004
).
11.
P. D.
McCormack
,
H.
Welker
, and
M.
Kelleher
, “
Taylor-Goertler vortices and their effect on heat transfer
,”
J. Heat Transfer
92
,
101
112
(
1970
).
12.
H.
Peerhossaini
and
J.
Wesfreid
, “
Les tourbillons de Görtler et leurs influence sur les turbines à gaz
,”
Bull Assoc. Tech. Maritime Aeronaut
88
,
361
381
(
1988
).
13.
R.
Toé
,
A.
Ajakh
, and
H.
Peerhossaini
, “
Heat transfer enhancement by Görtler instability
,”
Int. J. Heat Fluid Flow
23
,
194
204
(
2002
).
14.
J. M.
Floryan
, “
On the Görtler instability of boundary layers
,”
Prog. Aero. Sci.
28
,
235
271
(
1991
).
15.
W. S.
Saric
, “
Görtler vortices
,”
Annu. Rev. Fluid Mech.
26
,
379
409
(
1994
).
16.
P.
Hall
, “
Görtler vortices in growing boundary layers: The leading edge receptivity problem, linear growth and the nonlinear breakdown stage
,”
Mathematika
37
,
151
189
(
1990
).
17.
P.
Hall
, “
The linear development of Görtler vortices in growing boundary layers
,”
J. Fluid Mech.
130
,
41
58
(
1983
).
18.
H.
Mitsudharmadi
,
S. H.
Winoto
, and
D. A.
Shah
, “
Development of boundary-layer flow in the presence of forced wavelength Görtler vortices
,”
Phys. Fluids
16
,
3983
3996
(
2004
).
19.
J. D.
Swearingen
and
R. F.
Blackwelder
, “
The growth and breakdown of streamwise vortices in the presence of a wall
,”
J. Fluid Mech.
182
,
255
290
(
1987
).
20.
S.
Winoto
and
D. S.
Tandiono
, “
On the linear and nonlinear development of Görtler vortices
,”
Phys. Fluids
20
,
094103
(
2008
).
21.
L.-U.
Schrader
,
L.
Brandt
, and
T. A.
Zaki
, “
Receptivity, instability and breakdown of Görtler flow
,”
J. Fluid Mech.
682
,
362
396
(
2011
).
22.
L. F.
Souza
, “
On the odd and even secondary instabilities of Görtler vortices
,”
Theor. Comput. Fluid Dyn.
31
,
405
425
(
2017
).
23.
S.
Sharma
and
A.
Ducoin
, “
Direct numerical simulation of the effect of inlet isotropic turbulence on centrifugal instabilities over a curved wall
,”
Comput. Fluids
174
,
1
13
(
2018
).
24.
M.
Méndez
,
M. S.
Shadloo
,
A.
Hadjadj
, and
A.
Ducoin
, “
Boundary layer transition over a concave surface caused by centrifugal instabilities
,”
Comput. Fluids
171
,
135
153
(
2018
).
25.
J. K.
Rogenski
,
L. F.
De Souza
, and
J. M.
Floryan
, “
Non-linear aspects of Görtler instability in boundary layers with pressure gradient
,”
Phys. Fluids
28
,
124107
(
2016
).
26.
E.
Marensi
and
P.
Ricco
, “
Growth and wall-transpiration control of nonlinear unsteady Görtler vortices forced by free-stream vortical disturbances
,”
Phys. Fluids
29
,
114106
(
2017
).
27.
Y.-J.
Dai
,
W.-X.
Huang
, and
C.-X.
Xu
, “
Effects of Taylor-Görtler vortices on turbulent flows in a spanwise-rotating channel
,”
Phys. Fluids
28
,
115104
(
2016
).
28.
Y.
Guo
,
L.
Kleiser
, and
N.
Adams
, “
A comparison study of an improved temporal DNS and spatial DNS of compressible boundary layer transition
,” in
Fluid Dynamics Conference
(
AIAA
,
2012
), p.
2371
.
29.
W.
Liu
and
J. A.
Domaradzki
, “
Direct numerical simulation of transition to turbulence in Görtler flow
,”
J. Fluid Mech.
246
,
267
299
(
1993
).
30.
V. K.
Garg
and
R. C.
DiPrima
, “
The effect of heating on the stability of flow over concave walls
,”
Phys. Fluids
27
,
812
820
(
1984
).
31.
P.
Hall
, “
Taylor-Gortler vortices in fully developed or boundary-layer flows: Linear theory
,”
J. Fluid Mech.
124
,
475
494
(
1982
).
32.
Y.
Kamotani
,
J.
Lin
, and
S.
Ostrach
, “
Effect of destabilizing heating on Görtler vortices
,”
J. Heat Transfer
107
,
877
882
(
1985
).
33.
J.
Liu
and
A.
Sabry
, “
Concentration and heat transfer in nonlinear Görtler vortex flow and the analogy with longitudinal momentum transfer
,”
Proc. R. Soc. London, Ser. A
432
,
1
12
(
1991
).
34.
J. T. C.
Liu
, “
Nonlinear instability of developing streamwise vortices with applications to boundary layer heat transfer intensification through an extended Reynolds analogy
,”
Philos. Trans. R. Soc., A
366
,
2699
2716
(
2008
).
35.
J. T. C.
Liu
, “
An extended Reynolds analogy for excited wavy instabilities of developing streamwise vortices with applications to scalar mixing intensification
,”
Proc. R. Soc. A
463
,
1791
1813
(
2007
).
36.
I. G.
Girgis
and
J. T. C.
Liu
, “
Nonlinear mechanics of wavy instability of steady longitudinal vortices and its effect on skin friction rise in boundary layer flow
,”
Phys. Fluids
18
,
024102
(
2006
).
37.
S. T.
Smith
and
H.
Haj-Hariri
, “
Görtler vortices and heat transfer: A weakly nonlinear analysis
,”
Phys. Fluids A
5
,
2815
2825
(
1993
).
38.
R. I.
Crane
and
J.
Sabzvari
, “
Heat transfer visualization and measurement in unstable concave-wall laminar boundary layers
,”
J. Turbomach.
111
,
51
56
(
1989
).
39.
M. D.
Kestoras
and
T. W.
Simon
, “
Hydrodynamic and thermal measurements in a turbulent boundary layer recovering from concave curvature
,”
J. Turbomach.
114
,
891
898
(
1992
).
40.
J. T. C.
Liu
and
K.
Lee
, “
Heat transfer in a strongly nonlinear spatially developing longitudinal vorticity system
,”
Phys. Fluids
7
,
559
599
(
1995
).
41.
L.
Momayez
,
P.
Dupont
, and
H.
Peerhossaini
, “
Effects of vortex organization on heat transfer enhancement by Görtler instability
,”
Int. J. Therm. Sci.
43
,
753
760
(
2004
).
42.
L.
Momayez
,
P.
Dupont
, and
H.
Peerhossaini
, “
Some unexpected effects of wavelength and perturbation strength on heat transfer enhancement by Görtler instability
,”
Int. J. Heat Mass Transfer
47
,
3783
3795
(
2004
).
43.
L.
Momayez
,
P.
Dupont
,
G.
Delacourt
,
O.
Lottin
, and
H.
Peerhossaini
, “
Genetic algorithm based correlations for heat transfer calculation on concave surfaces
,”
Appl. Therm. Eng.
29
,
3476
3481
(
2009
).
44.
V.
Malatesta
,
L. F.
Souza
, and
J. T. C.
Liu
, “
Influence of Görtler vortices spanwise wavelength on heat transfer rates
,”
Comput. Therm. Sci.
5
,
389
(
2013
).
45.
V.
Malatesta
,
L. F.
Souza
,
J. T. C.
Liu
, and
M. J.
Kloker
, “
Heat transfer analysis in a flow over concave wall with primary and secondary instabilities
,”
Procedia IUTAM
14
,
487
495
(
2015
).
46.
V.
Malatesta
,
J. K.
Rogenski
, and
L. F.
de Souza
, “
Heat transfer enhancement via Görtler flow with spatial numerical simulation
,”
Int. J. Numer. Methods Heat Fluid Flow
27
,
189
(
2017
).
47.
P. F.
Fischer
,
J. W.
Lottes
, and
S. G.
Kerkemeier
, see http://nek5000.mcs.anl.gov for Nek5000 web page,
2008
.
48.
A. T.
Patera
, “
A spectral element method for fluid dynamics: Laminar flow in a channel expansion
,”
J. Comput. Phys.
54
,
468
488
(
1984
).
49.
Y.
Maday
and
A. T.
Patera
,
Spectral element methods for the incompressible Navier-Stokes equations
, in
State-of-the-art Surveys on Computational Mechanics (A90-47176 21-64)
(
American Society of Mechanical Engineers-ASME
,
New York
,
1989
), p.
71
143
, Research supported by DARPA.
50.
B.
Mohr
and
W.
Frings
, Jülich Blue Gene/p Extreme Scaling Workshop 2010,
2010
.
51.
J. M.
Floryan
and
W. S.
Saric
, “
Wavelength selection and growth of Goertler vortices
,”
AIAA J.
22
,
1529
1538
(
1984
).
52.
Y.
Guo
and
W. H.
Finlay
, “
Wavenumber selection and irregularity of spatially developing nonlinear Dean and Görtler vortices
,”
J. Fluid Mech.
264
,
1
40
(
1994
).
53.
See www-tech.criann.fr/calcul/tech/myria-doc/guide-util/ for CRIANN, Myria web page,
2016
.
54.
M.
Méndez
, “
Numerical simulations of boundary layer transition over a concave surface: Application to the design of Savonius-style vertical axis wind turbines
,” Ph.D. thesis,
Normandy University, National Institute of Applied Sciences of Rouen
,
2020
.
55.
J. M.
Floryan
and
W. S.
Saric
, “
Stability of Gortler vortices in boundary layers
,”
AIAA J.
20
,
316
324
(
1982
).
56.
X.
Wu
and
P.
Moin
, “
Transitional and turbulent boundary layer with heat transfer
,”
Phys. Fluids
22
,
085105
(
2010
).
57.
K.
Lee
and
J. T. C.
Liu
, “
On the growth of mushroomlike structures in nonlinear spatially developing Goertler vortex flow
,”
Phys. Fluids A
4
,
95
103
(
1992
).
You do not currently have access to this content.