A detailed analysis of small-scale locally unidirectional gravity-driven rivulet flow with prescribed volume flux down an inclined slippery substrate for a rivulet with either constant width (i.e., pinned contact lines) or constant contact angle is undertaken. In particular, we determine the effect of varying the Navier slip length λ (i.e., the strength of the slip at the solid–fluid interface) on the rivulet. The present analysis shows that the shape and size of the rivulet and the velocity within it depend strongly on the value of λ. Increasing the value of λ reduces the viscous resistance at the substrate and, hence, leads to a larger velocity within the rivulet, and so the prescribed flux is achieved with a smaller rivulet. In particular, in the limit of strong slip, λ, for a rivulet of a perfectly wetting fluid and a rivulet with constant width, the velocity becomes large and plug-like like O(λ1/2) ≫ 1, and the rivulet becomes shallow like O(λ−1/2) ≪ 1, while for a rivulet with positive constant contact angle, the velocity becomes large and plug-like like O(λ2/3) ≫ 1, and the rivulet becomes narrow like O(λ−1/3) ≪ 1 and shallow like O(λ−1/3) ≪ 1.

1.
A. A.
Darhuber
and
S. M.
Troian
, “
Principles of microfluidic actuation by modulation of shear stresses
,”
Annu. Rev. Fluid Mech.
37
,
425
455
(
2005
).
2.
R. W.
Griffiths
, “
The dynamics of lava flows
,”
Annu. Rev. Fluid Mech.
32
,
477
518
(
2000
).
3.
S. V.
Alekseenko
,
S. P.
Aktershev
,
A. V.
Bobylev
,
S. M.
Kharlamov
, and
D. M.
Markovich
, “
Nonlinear forced waves in a vertical rivulet flow
,”
J. Fluid Mech.
770
,
350
373
(
2015
).
4.
M. A.
Herrada
,
A. S.
Mohamed
,
J. M.
Montanero
, and
A. M.
Gañán-Calvo
, “
Stability of a rivulet flowing in a microchannel
,”
Int. J. Multiphase Flow
69
,
1
7
(
2015
).
5.
K.
Mahady
,
S.
Afkhami
, and
L.
Kondic
, “
On the influence of initial geometry on the evolution of fluid filaments
,”
Phys. Fluids
27
,
092104
(
2015
).
6.
P. D.
Howell
,
H.
Kim
,
M. G.
Popova
, and
H. A.
Stone
, “
Rivulet flow over a flexible beam
,”
J. Fluid Mech.
796
,
285
305
(
2016
).
7.
F. H. H.
Al Mukahal
,
B. R.
Duffy
, and
S. K.
Wilson
, “
Advection and Taylor–Aris dispersion in rivulet flow
,”
Proc. R. Soc. A
473
,
20170524
(
2017
).
8.
F. H. H.
Al Mukahal
,
B. R.
Duffy
, and
S. K.
Wilson
, “
Rivulet flow of generalized Newtonian fluids
,”
Phys. Rev. Fluids
3
,
083302
(
2018
).
9.
E.
Lauga
,
M. P.
Brenner
, and
H. A.
Stone
, “
Microfluidics: The no-slip boundary condition
,” in
Springer Handbook of Experimental Fluid Mechanics
, edited by
C.
Tropea
,
A. L.
Yarin
, and
J. F.
Foss
(
Springer-Verlag Berlin Heidelberg
,
2007
), Chap. 19, pp.
1219
1240
.
10.
M.
Rauscher
and
S.
Dietrich
, “
Wetting phenomena in nanofluidics
,”
Annu. Rev. Mater. Res.
38
,
143
172
(
2008
).
11.
J. P.
Rothstein
, “
Slip on superhydrophobic surfaces
,”
Annu. Rev. Fluid Mech.
42
,
89
109
(
2010
).
12.
T.
Sochi
, “
Slip at fluid–solid interface
,”
Polym. Rev.
51
,
309
340
(
2011
).
13.
T.
Lee
,
E.
Charrault
, and
C.
Neto
, “
Interfacial slip on rough, patterned and soft surfaces: A review of experiments and simulations
,”
Adv. Colloid Interface Sci.
210
,
21
38
(
2014
).
14.
J. M. P.
Nicholson
,
H.
Power
,
O.
Tammisola
,
S.
Hibberd
, and
E. D.
Kay
, “
Fluid dynamics of the slip boundary condition for isothermal rimming flow with moderate inertial effects
,”
Phys. Fluids
31
,
033602
(
2019
).
15.
G. S.
Beavers
and
D. D.
Joseph
, “
Boundary conditions at a naturally permeable wall
,”
J. Fluid Mech.
30
,
197
207
(
1967
).
16.
W.
Jäger
and
A.
Mikelić
, “
On the interface boundary condition of Beavers, Joseph, and Saffman
,”
SIAM J. Appl. Math.
60
,
1111
1127
(
2000
).
17.
M.
Le Bars
and
M. G.
Worster
, “
Interfacial conditions between a pure fluid and a porous medium: Implications for binary alloy solidification
,”
J. Fluid Mech.
550
,
149
173
(
2006
).
18.
D. A.
Nield
, “
The Beavers–Joseph boundary condition and related matters: A historical and critical note
,”
Transp. Porous Media
78
,
537
540
(
2009
).
19.
D. G.
Crowdy
, “
Slip length for transverse shear flow over a periodic array of weakly curved menisci
,”
Phys. Fluids
29
,
091702
(
2017
).
20.
D. G.
Crowdy
, “
Perturbation analysis of subphase gas and meniscus curvature effects for longitudinal flows over superhydrophobic surfaces
,”
J. Fluid Mech.
822
,
307
326
(
2017
).
21.
O.
Schnitzer
and
E.
Yariv
, “
Longitudinal pressure-driven flows between superhydrophobic grooved surfaces: Large effective slip in the narrow-channel limit
,”
Phys. Rev. Fluids
2
,
072101(R)
(
2017
).
22.
E.
Alinovi
and
A.
Bottaro
, “
Apparent slip and drag reduction for the flow over superhydrophobic and lubricant-impregnated surfaces
,”
Phys. Rev. Fluids
3
,
124002
(
2018
).
23.
E. S.
Asmolov
,
T. V.
Nizkaya
, and
O. I.
Vinogradova
, “
Enhanced slip properties of lubricant-infused grooves
,”
Phys. Rev. E
98
,
033103
(
2018
).
24.
E. J.
Walsh
,
A.
Feuerborn
,
J. H. R.
Wheeler
,
A. N.
Tan
,
W. M.
Durham
,
K. R.
Foster
, and
P. R.
Cook
, “
Microfluidics with fluid walls
,”
Nat. Commun.
8
,
816
(
2017
).
25.
L. M.
Hocking
, “
The spreading of a thin drop by gravity and capillarity
,”
Q. J. Mech. Appl. Math.
36
,
55
69
(
1983
).
26.
C.
Paterson
,
S. K.
Wilson
, and
B. R.
Duffy
, “
Pinning, de-pinning and re-pinning of a slowly varying rivulet
,”
Eur. J. Mech.: B/Fluids
41
,
94
108
(
2013
).
27.
B. R.
Duffy
and
H. K.
Moffatt
, “
Flow of a viscous trickle on a slowly varying incline
,”
Chem. Eng. J.
60
,
141
146
(
1995
).
28.
J. M.
Sullivan
,
S. K.
Wilson
, and
B. R.
Duffy
, “
A thin rivulet of perfectly wetting fluid subject to a longitudinal surface shear stress
,”
Q. J. Mech. Appl. Math.
61
,
25
61
(
2008
).
29.
S. K.
Wilson
and
B. R.
Duffy
, “
A rivulet of perfectly wetting fluid draining steadily down a slowly varying substrate
,”
IMA J. Appl. Math.
70
,
293
322
(
2005
).
30.
S. K.
Wilson
,
J. M.
Sullivan
, and
B. R.
Duffy
, “
The energetics of the breakup of a sheet and of a rivulet on a vertical substrate in the presence of a uniform surface shear stress
,”
J. Fluid Mech.
674
,
281
306
(
2011
).
31.
C.
Paterson
,
S. K.
Wilson
, and
B. R.
Duffy
, “
Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress
,”
Q. J. Mech. Appl. Math.
67
,
567
597
(
2014
).
32.
A. S.
Alshaikhi
, “
Theoretical analysis of some thin-film flows over complex surfaces
,” Ph.D. thesis,
University of Strathclyde
,
Glasgow
,
2020
.
33.
H. P.
Greenspan
, “
On the motion of a small viscous droplet that wets a surface
,”
J. Fluid Mech.
84
,
125
143
(
1978
).
34.
S. K.
Wilson
,
R.
Hunt
, and
B. R.
Duffy
, “
The rate of spreading in spin coating
,”
J. Fluid Mech.
413
,
65
88
(
2000
).
You do not currently have access to this content.