We elucidate the interparticle force between a pair of particles suspended in a liquid exposed to a standing bulk acoustic wave. A three-dimensional model based on the perturbation technique and tensor integral method is employed to predict the interparticle force by subtracting the time-averaged primary radiation force due to the scattering effect from the time-averaged total radiation force due to combined scattering and re-scattering effects. The results show that irrespective of the sizes of particles at the nodal plane, interparticle force Fs* is attractive and symmetric and scales with the product of wavenumber (k) and interdistance (δx) as Fs*kδx4. By studying the interparticle force between a pair of particles located out of the nodal plane, we unravel that the interparticle force is independent of their positions and depends on the horizontal (parallel to the nodal plane) and vertical interdistances. Our results reveal interparticle force changes from attractive to repulsive at a critical interdistance, attributed to the competition between time-averaged second-order pressure and velocity terms. We found that for a pair of particles parallel to the nodal plane, the interparticle force is independent of their distance from the nodal plane. Considering the total radiation force as the sum of the interparticle force, axial primary force, and drag force, we demonstrate a methodology for experimental quantification of the interparticle force. The interparticle force predicted from the model shows good agreement with experimental data (within 5%). Our study sheds light on interparticle forces that will facilitate more accurate estimation of forces on particles in an acoustic field.

1.
X.
Chen
and
C. L.
Ren
, “
A microfluidic chip integrated with droplet generation, pairing, trapping, merging, mixing and releasing
,”
RSC Adv.
7
,
16738
(
2017
).
2.
H.
Sun
,
Y.
Ren
,
L.
Hou
,
Y.
Tao
,
W.
Liu
,
T.
Jiang
, and
H.
Jiang
, “
Continuous particle trapping, switching, and sorting utilizing a combination of dielectrophoresis and alternating current electrothermal flow
,”
Anal. Chem.
91
,
5729
(
2019
).
3.
A.
Lenshof
,
C.
Magnusson
, and
T.
Laurell
, “
Acoustofluidics 8: Applications of acoustophoresis in continuous flow microsystems
,”
Lab Chip
12
,
1210
(
2012
).
4.
M.
Wiklund
, “
Acoustofluidics 12: Biocompatibility and cell viability in microfluidic acoustic resonators
,”
Lab Chip
12
,
2018
(
2012
).
5.
T.
Laurell
,
F.
Petersson
, and
A.
Nilsson
, “
Chip integrated strategies for acoustic separation and manipulation of cells and particles
,”
Chem. Soc. Rev.
36
,
492
(
2007
).
6.
A. A.
Doinikov
, “
Acoustic radiation forces: Classical theory and recent advances
,” in
Recent Research Developments in Acoustics
(
Transworld Research Network, India
,
2003
), Vol. 37661, p.
39
.
7.
A. A.
Doinikov
, “
Mutual interaction between a bubble and a drop in a sound field
,”
J. Acoust. Soc. Am.
99
,
3373
(
1996
).
8.
A. A.
Doinikov
and
S. T.
Zavtrak
, “
Interaction force between a bubble and a solid particle in a sound field
,”
Ultrasonics
34
,
807
(
1996
).
9.
S. M.
Woodside
,
B. D.
Bowen
, and
J. M.
Piret
, “
Measurement of ultrasonic forces for particle-liquid separations
,”
AIChE J.
43
,
1727
(
1997
).
10.
E.
Hemachandran
,
S.
Karthick
,
T.
Laurell
, and
A. K.
Sen
, “
Relocation of coflowing immiscible liquids under acoustic field in a microchannel
,”
Epl
125
,
54002
(
2019
).
11.
E.
Hemachandran
,
T.
Laurell
, and
A. K.
Sen
, “
Continuous droplet coalescence in a microchannel coflow using bulk acoustic waves
,”
Phys. Rev. Appl.
12
,
044008
(
2019
).
12.
S.
Karthick
and
A. K.
Sen
, “
Improved understanding of acoustophoresis and development of an acoustofluidic device for blood plasma separation
,”
Phys. Rev. Appl.
10
,
034037
(
2018
).
13.
S.
Karthick
and
A. K.
Sen
, “
Improved understanding of the acoustophoretic focusing of dense suspensions in a microchannel
,”
Phys. Rev. E
96
,
052606
(
2017
).
14.
A.
Nath
and
A. K.
Sen
, “
Acoustic behavior of a dense suspension in an inhomogeneous flow in a microchannel
,”
Phys. Rev. Appl.
12
,
054009
(
2019
).
15.
N. A.
Pelekasis
and
J. A.
Tsamopoulos
, “
Bjerknes forces between two bubbles. Part 1. Response to a step change in pressure
,”
J. Fluid Mech.
254
,
467
(
1993
).
16.
A. A.
Doinikov
, “
Acoustic radiation interparticle forces in a compressible fluid
,”
J. Fluid Mech.
444
,
1
(
2001
).
17.
X.
Zheng
and
R. E.
Apfel
, “
Acoustic interaction forces between two fluid spheres in an acoustic field
,”
J. Acoust. Soc. Am.
97
,
2218
(
1995
).
18.
G. T.
Silva
and
H.
Bruus
, “
Acoustic interaction forces between small particles in an ideal fluid
,”
Phys. Rev. E
90
,
063007
(
2014
).
19.
S.
Sepehrirahnama
,
F. S.
Chau
, and
K.-M.
Lim
, “
Effects of viscosity and acoustic streaming on the interparticle radiation force between rigid spheres in a standing wave
,”
Phys. Rev. E
93
,
023307
(
2016
).
20.
P.
Glynne-Jones
,
P. P.
Mishra
,
R. J.
Boltryk
, and
M.
Hill
, “
Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry
,”
J. Acoust. Soc. Am.
133
,
1885
(
2013
).
21.
B.
Hammarström
,
T.
Laurell
, and
J.
Nilsson
, “
Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems
,”
Lab Chip
12
,
4296
(
2012
).
22.
R.
Habibi
,
C.
Devendran
, and
A.
Neild
, “
Trapping and patterning of large particles and cells in a 1D ultrasonic standing wave
,”
Lab Chip
17
,
3279
(
2017
).
23.
A.
Garbin
,
I.
Leibacher
,
P.
Hahn
,
H.
Le Ferrand
,
A.
Studart
, and
J.
Dual
, “
Acoustophoresis of disk-shaped microparticles: A numerical and experimental study of acoustic radiation forces and torques
,”
J. Acoust. Soc. Am.
138
,
2759
(
2015
).
24.
T.
Baasch
,
I.
Leibacher
, and
J.
Dual
, “
Multibody dynamics in acoustophoresis
,”
J. Acoust. Soc. Am.
141
,
1664
(
2017
).
25.
T.
Baasch
and
J.
Dual
, “
Acoustofluidic particle dynamics: Beyond the Rayleigh limit
,”
J. Acoust. Soc. Am.
143
,
509
(
2018
).
26.
S.
Sepehrirahnama
,
K.-M.
Lim
, and
F. S.
Chau
, “
Numerical study of interparticle radiation force acting on rigid spheres in a standing wave
,”
J. Acoust. Soc. Am.
137
,
2614
(
2015
).
27.
J. H.
Lopes
,
M.
Azarpeyvand
, and
G. T.
Silva
, “
Acoustic interaction forces and torques acting on suspended spheres in an ideal fluid
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
63
,
186
(
2016
).
28.
K.
Yoshida
,
T.
Fujikawa
, and
Y.
Watanabe
, “
Experimental investigation on reversal of secondary Bjerknes force between two bubbles in ultrasonic standing wave
,”
J. Acoust. Soc. Am.
130
,
135
(
2011
).
29.
A.
Garcia-Sabaté
,
A.
Castro
,
M.
Hoyos
, and
R.
González-Cinca
, “
Experimental study on inter-particle acoustic forces
,”
J. Acoust. Soc. Am.
135
,
1056
(
2014
).
30.
K. A.
Johnson
,
H. R.
Vormohr
,
A. A.
Doinikov
,
A.
Bouakaz
,
C. W.
Shields
,
G. P.
López
, and
P. A.
Dayton
, “
Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves
,”
Phys. Rev. E
93
,
053109
(
2016
).
31.
A. R.
Mohapatra
,
S.
Sepehrirahnama
, and
K.-M.
Lim
, “
Experimental measurement of interparticle acoustic radiation force in the Rayleigh limit
,”
Phys. Rev. E
97
,
053105
(
2018
).
32.
D.
Saeidi
,
M.
Saghafian
,
S.
Haghjooy Javanmard
,
B.
Hammarström
, and
M.
Wiklund
, “
Acoustic dipole and monopole effects in solid particle interaction dynamics during acoustophoresis
,”
J. Acoust. Soc. Am.
145
,
3311
(
2019
).
33.
L. A.
Crum
, “
Acoustic force on a liquid droplet in an acoustic stationary wave
,”
J. Acoust. Soc. Am.
50
,
157
(
1971
).
34.
G.
Simon
,
M. A. B.
Andrade
,
M. P. Y.
Desmulliez
,
M. O.
Riehle
, and
A. L.
Bernassau
, “
Numerical determination of the secondary acoustic radiation force on a small sphere in a plane standing wave field
,”
Micromachines
10
,
431
(
2019
).
35.
R.
Barnkob
,
P.
Augustsson
,
T.
Laurell
, and
H.
Bruus
, “
Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane
,”
Phys. Rev. E
86
,
056307
(
2012
).
36.
P. B.
Muller
,
M.
Rossi
,
Á. G.
Marín
,
R.
Barnkob
,
P.
Augustsson
,
T.
Laurell
,
C. J.
Kähler
, and
H.
Bruus
, “
Ultrasound-induced acoustophoretic motion of microparticles in three dimensions
,”
Phys. Rev. E
88
,
023006
(
2013
).
37.
F. G.
Mitri
, “
Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence
,”
Phys. Fluids
28
,
077104
(
2016
).
38.
P.
Hahn
,
I.
Leibacher
,
T.
Baasch
, and
J.
Dual
, “
Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles
,”
Lab Chip
15
,
4302
(
2015
).
39.
H.
Bruus
, “
Acoustofluidics 7: The acoustic radiation force on small particles
,”
Lab Chip
12
,
1014
(
2012
).
40.
M. A. H.
Weiser
,
R. E.
Apfel
, and
E. A.
Neppiras
, “
Interparticle forces on red cells in a standing wave field
,”
Acustica
56
,
114
(
1984
).
41.
P.
Glynne-Jones
and
M.
Hill
, “
Acoustofluidics 23: Acoustic manipulation combined with other force fields
,”
Lab Chip
13
,
1003
(
2013
).
42.
M.
Settnes
and
H.
Bruus
, “
Forces acting on a small particle in an acoustical field in a viscous fluid
,”
Phys. Rev. E
85
,
016327
(
2012
).
43.
M.
Rajabi
and
A.
Mojahed
, “
Acoustic active two body clusters
,”
J. Sound Vib.
429
,
34
(
2018
).

Supplementary Material

You do not currently have access to this content.