Suspensions of swimming microorganisms play important roles in biology, medicine, and engineering. To predict and control the flow field of such suspensions, an understanding of their rheological properties is required. In this background, the suspension rheology of various types of microorganisms has been investigated intensively. Research has shown that some microorganisms, such as ciliates, deform when a strong force is exerted on their bodies. However, the effect of cell deformability on suspension rheology has not yet been clarified. In this study, we used a deformable torque swimmer, as a model ciliate, to investigate the rheological properties of a dilute suspension under shear flow. Our results show that the model swimmer tends to gradually change its orientation toward the shear plane or vorticity axis. Regardless of the swimming mode, the apparent shear viscosity shows shear-thinning properties, with the first normal stress difference being positive in sign. The second normal stress difference can be positive or negative, depending on the swimming mode, the deformability, and the shear rate. The mechanism to show such rheological properties can be understood based on the deformed shape and direction of the swimmer’s stresslet. These findings are important for understanding the suspension rheology of natural microorganisms and artificial deformable swimmers, which is essential to predict and control the flow of these suspensions.

1.
Anderson
,
D. M.
,
Cembella
,
A. D.
, and
Hallegraeff
,
G. M.
, “
Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management
,”
Annu. Rev. Mar. Sci.
4
,
143
176
(
2012
).
2.
Avron
,
J. E.
,
Gat
,
O.
, and
Kenneth
,
O.
, “
Optimal swimming at low Reynolds numbers
,”
Phys. Rev. Lett.
93
,
186001
(
2004
).
3.
Bagchi
,
P.
and
Kalluri
,
R. M.
, “
Rheology of a dilute suspension of liquid-filled elastic capsules
,”
Phys. Rev. E
81
,
056320
(
2010
).
4.
Batchelor
,
G. K.
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
570
(
1970
).
5.
Batchelor
,
G. K.
and
Green
,
J. T.
, “
The determination of the bulk stress in a suspension of spherical particles to order c2
,”
J. Fluid Mech.
56
,
401
427
(
1972
).
6.
Blake
,
J.
, “
A spherical envelope approach to ciliary propulsion
,”
J. Fluid Mech.
46
,
199
208
(
1971
).
7.
Durham
,
W. M.
,
Kessler
,
J. O.
, and
Stocker
,
R.
, “
Disruption of vertical motility by shear triggers formation of thin phytoplankton layers
,”
Science
323
,
1067
1070
(
2009
).
8.
Einstein
,
A.
, “
Eine neue bestimmung der moleküldimensionen
,”
Ann. Phys.
324
,
289
306
(
1906
).
9.
Elgeti
,
J.
,
Winkler
,
R. G.
, and
Gompper
,
G.
, “
Physics of microswimmers-single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
,
056601
(
2015
).
10.
Farutin
,
A.
,
Rafai
,
S.
,
Dysthe
,
D. K.
,
Duperray
,
A.
,
Peyla
,
P.
, and
Misbah
,
C.
, “
Amoeboid swimming: A generic self-propulsion of cells in fluids by means of membrane deformations
,”
Phys. Rev. Lett.
111
,
228102
(
2013
).
11.
Field
,
C.
, “
Primary production of the biosphere: Integrating terrestrial and oceanic components
,”
Science
281
,
237
240
(
1998
).
12.
Goldstein
,
R. E.
, “
Green algae as model organisms for biological fluid dynamics
,”
Annu. Rev. Fluid Mech.
47
,
343
375
(
2015
).
13.
Guasto
,
J. S.
,
Rusconi
,
R.
, and
Stocker
,
R.
, “
Fluid mechanics of planktonic microorganisms
,”
Annu. Rev. Fluid Mech.
44
,
373
400
(
2012
).
14.
Hatwalne
,
Y.
,
Ramaswamy
,
S.
,
Rao
,
M.
, and
Aditi Simha
,
R.
, “
Rheology of active-particle suspensions
,”
Phys. Rev. Lett.
92
,
118101
(
2004
).
15.
Helfrich
,
W.
, “
Elastic properties of lipid bilayers: Theory and possible experiments
,”
Z. Naturforsch., C
28
,
693
703
(
1973
).
16.
Ishikawa
,
T.
, “
Suspension biomechanics of swimming microbes
,”
J. R. Soc., Interface
6
,
815
834
(
2009
).
17.
Ishikawa
,
T.
, “
Vertical dispersion of model microorganisms in horizontal shear flow
,”
J. Fluid Mech.
705
,
98
119
(
2012
).
18.
Ishikawa
,
T.
and
Kikuchi
,
K.
, “
Biomechanics of Tetrahymena escaping from a dead end
,”
Proc. R. Soc. B
285
,
20172368
(
2018
).
19.
Ishikawa
,
T.
and
Pedley
,
T. J.
, “
The rheology of a semi-dilute suspension of swimming model micro-organisms
,”
J. Fluid Mech.
588
,
399
435
(
2007
).
20.
Ishikawa
,
T.
,
Pedley
,
T. J.
, and
Yamaguchi
,
T.
, “
Orientational relaxation time of bottom-heavy squirmers in a semi-dilute suspension
,”
J. Theor. Biol.
249
,
296
306
(
2007
).
21.
Ishikawa
,
T.
,
Simmonds
,
M. P.
, and
Pedley
,
T. J.
, “
Hydrodynamic interaction of two swimming model micro-organisms
,”
J. Fluid Mech.
568
,
119
160
(
2006
).
22.
Ishikawa
,
T.
,
Tanaka
,
T.
,
Imai
,
Y.
,
Omori
,
T.
, and
Matsunaga
,
D.
, “
Deformation of a micro-torque swimmer
,”
Proc. R. Soc. A
472
,
20150604
(
2016
).
23.
Jeffery
,
G. B.
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. A
102
,
161
179
(
1922
).
24.
Lauga
,
E.
and
Powers
,
T. R.
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
25.
Lighthill
,
M. J.
, “
On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers
,”
Commun. Pure Appl. Math.
5
,
109
118
(
1952
).
26.
López
,
H. M.
,
Gachelin
,
J.
,
Douarche
,
C.
,
Auradou
,
H.
, and
Clement
,
E.
, “
Turning bacteria suspensions into super fluids
,”
Phys. Rev. Lett.
115
,
028301
(
2015
).
27.
Matsui
,
H.
,
Omori
,
T.
, and
Ishikawa
,
T.
, “
Hydrodynamic interaction of two deformable torque swimmers
,”
J. Fluid Mech.
894
,
A9
(
2020
).
28.
Morita
,
T.
,
Omori
,
T.
, and
Ishikawa
,
T.
, “
Passive swimming of a microcapsule in vertical fluid oscillation
,”
Phys. Rev. E
98
,
023108
(
2018a
).
29.
Morita
,
T.
,
Omori
,
T.
, and
Ishikawa
,
T.
, “
Biaxial fluid oscillations can propel a microcapsule swimmer in an arbitrary direction
,”
Phys. Rev. E
98
,
063102
(
2018b
).
30.
Ohta
,
T.
, “
Dynamics of deformable active particles
,”
J. Phys. Soc. Jpn.
86
,
072001
(
2017
).
31.
Ohta
,
T.
and
Ohkuma
,
T.
, “
Deformable self-propelled particles
,”
Phys. Rev. Lett.
102
,
154101
(
2009
).
32.
Ohta
,
T.
and
Yamanaka
,
S.
, “
Traveling bands in self-propelled soft particles
,”
Eur. Phys. J.: Spec. Top.
223
,
1279
(
2014
).
33.
Omori
,
T.
,
Imai
,
Y.
,
Yamaguchi
,
T.
, and
Ishikawa
,
T.
, “
Reorientation of a nonspherical capsule in creeping shear flow
,”
Phys. Rev. Lett.
108
,
138102
(
2012
).
34.
Omori
,
T.
,
Ishikawa
,
T.
,
Imai
,
Y.
, and
Yamaguchi
,
T.
, “
Hydrodynamic interaction between two red blood cells in simple shear flow: Its impact on the rheology of a semi-dilute suspension
,”
Comput. Mech.
54
,
933
941
(
2014
).
35.
Ou-Yang
,
Z.
and
Helfrich
,
W.
, “
Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders
,”
Phys. Rev. A
39
,
5280
5288
(
1989
).
36.
Pedley
,
T. J.
and
Kessler
,
J. O.
, “
Hydrodynamic phenomena in suspensions of swimming microorganisms
,”
Annu. Rev. Fluid Mech.
24
,
313
358
(
1992
).
37.
Pozrikidis
,
C.
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University Press
,
Cambridge, UK
,
1992
).
38.
Rafai
,
S.
,
Jibuti
,
L.
, and
Peyla
,
P.
, “
Effective viscosity of microswimmer suspensions
,”
Phys. Rev. Lett.
104
,
098102
(
2010
).
39.
Saintillan
,
D.
, “
Rheology of active fluids
,”
Annu. Rev. Fluid Mech.
50
,
563
592
(
2018
).
40.
Shapere
,
A.
and
Wilczek
,
F.
, “
Self-propulsion at low Reynolds number
,”
Phys. Rev. Lett.
58
,
2051
(
1987
).
41.
Skalak
,
R.
,
Tozere
,
A.
,
Zarda
,
R. P.
, and
Chien
,
S.
, “
Strain energy function of red blood cell membranes
,”
Biophys. J.
13
,
245
264
(
1973
).
42.
Tarama
,
M.
,
Menzel
,
A. M.
, and
Ohta
,
T.
, “
Deformable microswimmer in a swirl: Capturing and scattering dynamics
,”
Phys. Rev. E
90
,
032907
(
2014
).
43.
Walter
,
J.
,
Salsac
,
A.-V.
, and
Barthès-Biesel
,
D.
, “
Ellipsoidal capsules in simple shear flow: Prolate versus oblate initial shapes
,”
J. Fluid Mech.
676
,
318
347
(
2011
).
44.
Walter
,
J.
,
Salsac
,
A.-V.
,
Barthès-Biesel
,
D.
, and
Tallec
,
P. L.
, “
Coupling of finite element and boundary integral methods for a capsule in a Stokes flow
,”
Int. J. Numer. Methods Eng.
83
,
829
850
(
2010
).
45.
Yamanaka
,
S.
and
Ohta
,
T.
, “
Collision dynamics of traveling bands in systems of deformable self-propelled particles
,”
Phys. Rev. E
90
,
042927
(
2014a
).
46.
Yamanaka
,
S.
and
Ohta
,
T.
, “
Formation and collision of traveling bands in interacting deformable self-propelled particles
,”
Phys. Rev. E
89
,
012918
(
2014b
).
You do not currently have access to this content.