This paper reports the dynamic wetting behavior and heat transfer characteristics for impinging droplets on heated bi-phobic surfaces (superhydrophobic matrix with hydrophobic spots). A non-patterned superhydrophobic and a sticky hydrophobic surface acted as control wettability surfaces. As expected, differences in wetting and heat transfer dynamics were noticeable for all surfaces with the most pronounced variation during the receding phase. During spreading, inertia from the impact dominated the droplet dynamics, and heat transfer was dominated by convection at the contact line and internal flow. As contact line velocities decreased over time, evaporative cooling at the contact line gained importance, especially for the bi-phobic surfaces, where liquid remained trapped on the hydrophobic spots during receding. These satellite droplets increased the contact area and contact line length and assisted heat transfer and substrate cooling after lift-off of the main droplet. Compared with the hydrophobic surface, the contribution of the contact line heat transfer increased by 17%–27% on the bi-phobic surfaces depending on the location of impact relative to the hydrophobic spots. Nonetheless, the bi-phobic surfaces had a lower total thermal energy transfer. However, compared with the plain superhydrophobic surface, heat transfer was enhanced by 33%–46% by patterning the surface. Depending on the application, a trade-off exists between the different surfaces: the sticky hydrophobic surface provides the best cooling efficiency yet is prone to flooding, whereas the superhydrophobic surface repels the liquid but has poor cooling efficiency. The bi-phobic surfaces provide a middle path with reasonable cooling effectiveness and low flooding probability.

1.
D.
Khojasteh
,
M.
Kazerooni
,
S.
Salarian
, and
R.
Kamali
, “
Droplet impact on superhydrophobic surfaces: A review of recent developments
,”
J. Ind. Eng. Chem.
42
,
1
14
(
2016
).
2.
C.
Guo
,
D.
Maynes
,
J.
Crockett
, and
D.
Zhao
, “
Heat transfer to bouncing droplets on superhydrophobic surfaces
,”
Int. J. Heat Mass Transfer
137
,
857
867
(
2019
).
3.
Y.
Liao
,
P.
Dimopoulos Eggenschwiler
,
R.
Furrer
,
M.
Wang
, and
K.
Boulouchos
, “
Heat transfer characteristics of urea-water spray impingement on hot surfaces
,”
Int. J. Heat Mass Transfer
117
,
447
457
(
2018
).
4.
S.
Shiri
and
J. C.
Bird
, “
Heat exchange between a bouncing drop and a superhydrophobic substrate
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
6930
6935
(
2017
).
5.
A.
Gholijani
,
C.
Schlawitschek
,
T.
Gambaryan-Roisman
, and
P.
Stephan
, “
Heat transfer during drop impingement onto a hot wall: The influence of wall superheat, impact velocity, and drop diameter
,”
Int. J. Heat Mass Transfer
153
,
119661
(
2020
).
6.
G.
Liang
and
I.
Mudawar
, “
Review of drop impact on heated walls
,”
Int. J. Heat Mass Transfer
106
,
103
126
(
2017
).
7.
J.
Breitenbach
,
I. V.
Roisman
, and
C.
Tropea
, “
Drop collision with a hot, dry solid substrate: Heat transfer during nucleate boiling
,”
Phys. Rev. Fluids
2
(
7
),
074301
(
2017
).
8.
J.
Breitenbach
,
I. V.
Roisman
, and
C.
Tropea
, “
Heat transfer in the film boiling regime: Single drop impact and spray cooling
,”
Int. J. Heat Mass Transfer
110
,
34
42
(
2017
).
9.
G.
Liang
,
X.
Mu
,
Y.
Guo
,
S.
Shen
,
S.
Quan
, and
J.
Zhang
, “
Contact vaporization of an impacting drop on heated surfaces
,”
Exp. Therm. Fluid Sci.
74
,
73
80
(
2016
).
10.
K.
Okuyama
and
K.
Yoshida
, “
Dynamic behavior with rapid evaporation of an inkjet water droplet upon collision with a high-temperature solid above the limit of liquid superheat
,”
Int. J. Heat Mass Transfer
116
,
994
1002
(
2018
).
11.
M. A. J.
van Limbeek
,
P. B. J.
Hoefnagels
,
C.
Sun
, and
D.
Lohse
, “
Origin of spray formation during impact on heated surfaces
,”
Soft Matter
13
(
41
),
7514
7520
(
2017
).
12.
J.
Breitenbach
,
I. V.
Roisman
, and
C.
Tropea
, “
From drop impact physics to spray cooling models: A critical review
,”
Exp. Fluids
59
(
3
),
55
(
2018
).
13.
Q.
Ma
,
X.
Wu
, and
T.
Li
, “
Droplet impact on superheated surfaces with different wettabilities
,”
Int. J. Heat Mass Transfer
141
,
1181
(
2019
).
14.
S. H.
Lee
,
S. J.
Lee
,
J. S.
Lee
,
K.
Fezzaa
, and
J. H.
Je
, “
Transient dynamics in drop impact on a superheated surface
,”
Phys. Rev. Fluids
3
,
124308
(
2018
).
15.
G.
Liang
and
I.
Mudawar
, “
Review of spray cooling—Part 1: Single-phase and nucleate boiling regimes, and critical heat flux
,”
Int. J. Heat Mass Transfer
115
,
1174
1205
(
2017
).
16.
Y.
Cheng
,
F.
Wang
,
J.
Xu
,
D.
Liu
, and
Y.
Sui
, “
Numerical investigation of droplet spreading and heat transfer on hot substrates
,”
Int. J. Heat Mass Transfer
121
,
402
411
(
2018
).
17.
G.
Rosengarten
and
R.
Tschaut
, “
Effect of superhydrophobicity on impinging droplet heat transfer
,” in
Proceedings of the 14th International Heat Transfer Conference
,
Washington, USA
,
8–13 August 2010
.
18.
D.
Richard
,
C.
Clanet
, and
D.
Quéré
, “
Contact time of a bouncing drop
,”
Nature
417
,
811
(
2002
).
19.
S.
Herbert
,
S.
Fischer
,
T.
Gambaryan-Roisman
, and
P.
Stephan
, “
Local heat transfer and phase change phenomena during single drop impingement on a hot surface
,”
Int. J. Heat Mass Transfer
61
,
605
614
(
2013
).
20.
E. J.
Gelissen
,
C. W. M.
van der Geld
,
M. W.
Baltussen
, and
J. G. M.
Kuerten
, “
Modeling of droplet impact on a heated solid surface with a diffuse interface model
,”
Int. J. Multiphase Flow
123
,
103173
(
2020
).
21.
G.
Guggilla
,
A.
Pattamatta
, and
R.
Narayanaswamy
, “
Numerical investigation into the evaporation dynamics of drop-on-drop collisions over heated wetting surfaces
,”
Int. J. Heat Mass Transfer
123
,
1050
1067
(
2018
).
22.
C.
Xu
,
R.
Feng
,
F.
Song
,
J.-M.
Wu
,
Y.-Q.
Luo
,
X.-L.
Wang
, and
Y.-Z.
Wang
, “
Continuous and controlled directional water transportation on a hydrophobic/superhydrophobic patterned surface
,”
Chem. Eng. J.
352
,
722
729
(
2018
).
23.
X.
Yang
,
X.
Liu
,
Y.
Lu
,
J.
Song
,
S.
Huang
,
S.
Zhou
,
Z.
Jin
, and
W.
Xu
, “
Controllable water adhesion and anisotropic sliding on patterned superhydrophobic surface for droplet manipulation
,”
J. Phys. Chem. C
120
,
7233
7240
(
2016
).
24.
T.
Chen
,
H.
Liu
,
S.
Teng
,
W.
Yan
,
H.
Yang
, and
J.
Li
, “
Water transport control on a patterned superhydrophobic surface via laser direct writing
,”
J. Vac. Sci. Technol., A
34
(
6
),
061103
(
2016
).
25.
H.
Wu
,
K.
Zhu
,
B.
Cao
,
Z.
Zhang
,
B.
Wu
,
L.
Liang
,
G.
Chai
, and
A.
Liu
, “
Smart design of wettability-patterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets
,”
Soft Matter
13
(
16
),
2995
3002
(
2017
).
26.
Y.
Wang
,
L.
Zhang
,
J.
Wu
,
M. N.
Hedhili
, and
P.
Wang
, “
A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting
,”
J. Mater. Chem. A
3
(
37
),
18963
18969
(
2015
).
27.
Z.
Yu
,
F. F.
Yun
,
Y.
Wang
,
L.
Yao
,
S.
Dou
,
K.
Liu
,
L.
Jiang
, and
X.
Wang
, “
Desert beetle-inspired superwettable patterned surfaces for water harvesting
,”
Small
13
(
36
),
1701403
(
2017
).
28.
B.
Chang
,
Q.
Zhou
,
R. H. A.
Ras
,
A.
Shah
,
Z.
Wu
, and
K.
Hjort
, “
Sliding droplets on hydrophilic/superhydrophobic patterned surfaces for liquid deposition
,”
Appl. Phys. Lett.
108
(
15
),
154102
(
2016
).
29.
Y.
Zhao
,
R.
Wang
, and
C.
Yang
, “
Interdroplet freezing wave propagation of condensation frosting on micropillar patterned superhydrophobic surfaces of varying pitches
,”
Int. J. Heat Mass Transfer
108
,
1048
1056
(
2017
).
30.
J.
Sun
,
B.
Bao
,
J.
Jiang
,
M.
He
,
X.
Zhang
, and
Y.
Song
, “
Facile fabrication of a superhydrophilic–superhydrophobic patterned surface by inkjet printing a sacrificial layer on a superhydrophilic surface
,”
RSC Adv.
6
(
37
),
31470
31475
(
2016
).
31.
L.
Zhang
,
J.
Wu
,
M. N.
Hedhili
,
X.
Yang
, and
P.
Wang
, “
Inkjet printing for direct micropatterning of a superhydrophobic surface: Toward biomimetic fog harvesting surfaces
,”
J. Mater. Chem. A
3
(
6
),
2844
2852
(
2015
).
32.
Y.
Yang
,
X.
Chen
, and
Y.
Huang
, “
Spreading dynamics of droplet impact on a wedge-patterned biphilic surface
,”
Appl. Sci.
9
(
11
),
2214
(
2019
).
33.
M.
Zupančič
,
M.
Steinbücher
,
P.
Gregorčič
, and
I.
Golobič
, “
Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces
,”
Appl. Therm. Eng.
91
,
288
297
(
2015
).
34.
U.
Sen
,
S.
Chatterjee
,
J.
Crockett
,
R.
Ganguly
,
L.
Yu
, and
C. M.
Megaridis
, “
Orthogonal liquid-jet impingement on wettability-patterned impermeable substrates
,”
Phys. Rev. Fluids
4
,
014002
(
2019
).
35.
A.
Ghosh
,
S.
Beaini
,
B. J.
Zhang
,
R.
Ganguly
, and
C. M.
Megaridis
, “
Enhancing dropwise condensation through bioinspired wettability patterning
,”
Langmuir
30
(
43
),
13103
13115
(
2014
).
36.
X.
Li
,
G.
Wang
,
B.
Zhan
,
S.
Li
,
Z.
Han
, and
Y.
Liu
, “
A novel icephobic strategy: The fabrication of biomimetic coupling micropatterns of superwetting surface
,”
Adv. Mater. Interfaces
6
,
1900864
(
2019
).
37.
D.
Attinger
,
C.
Frankiewicz
,
A. R.
Betz
,
T. M.
Schutzius
,
R.
Ganguly
,
A.
Das
,
C.-J.
Kim
, and
C. M.
Megaridis
, “
Surface engineering for phase change heat transfer: A review
,”
MRS Energy Sustain.
1
,
E4
(
2014
).
38.
P. S.
Mahapatra
,
A.
Ghosh
,
R.
Ganguly
, and
C. M.
Megaridis
, “
Key design and operating parameters for enhancing dropwise condensation through wettability patterning
,”
Int. J. Heat Mass Transfer
92
,
877
883
(
2016
).
39.
T. P.
Koukoravas
,
A.
Ghosh
,
P. S.
Mahapatra
,
R.
Ganguly
, and
C. M.
Megaridis
, “
Spatially-selective cooling by liquid jet impinging orthogonally on a wettability-patterned surface
,”
Int. J. Heat Mass Transfer
95
,
142
152
(
2016
).
40.
S.
Kim
,
M.-W.
Moon
, and
H.-Y.
Kim
, “
Drop impact on super-wettability-contrast annular patterns
,”
J. Fluid Mech.
730
,
328
342
(
2013
).
41.
M.
Lee
,
Y. S.
Chang
, and
H.-Y.
Kim
, “
Drop impact on microwetting patterned surfaces
,”
Phys. Fluids
22
(
7
),
072101
(
2010
).
42.
H.
Li
,
W.
Fang
,
Y.
Li
,
Q.
Yang
,
M.
Li
,
Q.
Li
,
X.-Q.
Feng
, and
Y.
Song
, “
Spontaneous droplets gyrating via asymmetric self-splitting on heterogeneous surfaces
,”
Nat. Commun.
10
,
950
(
2019
).
43.
N. D.
Diby
,
J.
Wang
, and
Y.
Duan
, “
Motion behaviour of water-droplet on alternate superhydrophobic/hydrophilic ZnO wetting-patterned surface
,”
Surf. Eng.
36
,
1
(
2019
).
44.
H.
Yang
,
K.
Sun
,
Y.
Xue
,
C.
Xu
,
D.
Fan
,
Y.
Cao
, and
W.
Xue
, “
Controllable drop splashing on picosecond laser patterned hybrid superhydrophobic/-philic surfaces
,”
Appl. Surf. Sci.
481
,
184
191
(
2019
).
45.
J. H.
Moon
,
M.
Cho
, and
S. H.
Lee
, “
Dynamic wetting and heat transfer characteristics of a liquid droplet impinging on heated textured surfaces
,”
Int. J. Heat Mass Transfer
97
,
308
317
(
2016
).
46.
A. I.
Neto
,
P. A.
Levkin
, and
J. F.
Mano
, “
Patterned superhydrophobic surfaces to process and characterize biomaterials and 3D cell culture
,”
Mater. Horiz.
5
,
379
393
(
2018
).
47.
Y.
Chen
,
K.
Li
,
S.
Zhang
,
L.
Qin
,
S.
Deng
,
L.
Ge
,
L.-P.
Xu
,
L.
Ma
,
S.
Wang
, and
X.
Zhang
, “
Bioinspired superwettable microspine chips with directional droplet transportation for biosensing
,”
ACS Nano
14
,
4654
(
2020
).
48.
M. J.
Gibbons
,
P.
Di Marco
, and
A. J.
Robinson
, “
Local heat transfer to an evaporating superhydrophobic droplet
,”
Int. J. Heat Mass Transfer
121
,
641
652
(
2018
).
49.
W.
Qi
,
J.
Li
, and
P. B.
Weisensee
, “
Evaporation of sessile water droplets on horizontal and vertical biphobic patterned surfaces
,”
Langmuir
35
(
52
),
17185
17192
(
2019
).
50.
M. J.
Gibbons
,
P.
Di Marco
, and
A. J.
Robinson
, “
Heat flux distribution beneath evaporating hydrophilic and superhydrophobic droplets
,”
Int. J. Heat Mass Transfer
148
,
119093
(
2020
).
51.
A. K.
Kulkarni
and
L. C.
Chang
, “
Electrical and structural characteristics of chromium thin films deposited on glass and alumina substrates
,”
Thin Solid Films
301
(
1-2
),
17
22
(
1997
).
52.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Time evolution of liquid drop impact onto solid, dry surfaces
,”
Exp. Fluids
33
,
112
124
(
2002
).
53.
J.
Jung
,
S.
Jeong
, and
H.
Kim
, “
Investigation of single-droplet/wall collision heat transfer characteristics using infrared thermometry
,”
Int. J. Heat Mass Transfer
92
,
774
783
(
2016
).
54.
D.
Chatzikyriakou
,
S. P.
Walker
,
C. P.
Hale
, and
G. F.
Hewitt
, “
The measurement of heat transfer from hot surfaces to non-wetting droplets
,”
Int. J. Heat Mass Transfer
54
,
1432
1440
(
2011
).
55.
S. S.
Kumar
,
A.
Karn
,
R. E. A.
Arndt
, and
J.
Hong
, “
Internal flow measurements of drop impacting a solid surface
,”
Exp. Fluids
58
,
12
(
2017
).
56.
N.
Erkan
, “
Full-field spreading velocity measurement inside droplets impinging on a dry solid-heated surface
,”
Exp. Fluids
60
,
88
(
2019
).
57.
Z.
Zhang
and
P.
Zhang
, “
Numerical interpretation to the roles of liquid viscosity in droplet spreading at small Weber numbers
,”
Langmuir
35
(
49
),
16164
16171
(
2019
).
58.
J.
Guo
,
S.
Lin
,
B.
Zhao
,
X.
Deng
, and
L.
Chen
, “
Spreading of impinging droplets on nanostructured superhydrophobic surfaces
,”
Appl. Phys. Lett.
113
(
7
),
071602
(
2018
).
59.
J. B.
Lee
,
D.
Derome
,
A.
Dolatabadi
, and
J.
Carmeliet
, “
Energy budget of liquid drop impact at maximum spreading: Numerical simulations and experiments
,”
Langmuir
32
,
1279
(
2016
).
60.
G.
Lagubeau
,
M. A.
Fontelos
,
C.
Josserand
,
A.
Maurel
,
V.
Pagneux
, and
P.
Petitjeans
, “
Spreading dynamics of drop impacts
,”
J. Fluid Mech.
713
,
50
60
(
2012
).
61.
M.-J.
Wang
,
F.-H.
Lin
,
Y.-L.
Hung
, and
S.-Y.
Lin
, “
Dynamic behaviors of droplet impact and spreading: Water on five different substrates
,”
Langmuir
25
(
12
),
6772
6780
(
2009
).
62.
C.
Josserand
and
S. T.
Thoroddsen
, “
Drop impact on a solid surface
,”
Annu. Rev. Fluid. Mech.
48
,
365
391
(
2016
).
63.
C.
Antonini
,
A.
Amirfazli
, and
M.
Marengo
, “
Drop impact and wettability: From hydrophilic to superhydrophobic surfaces
,”
Phys. Fluids
24
(
10
),
102104
(
2012
).
64.
C. W.
Visser
,
P. E.
Frommhold
,
S.
Wildeman
,
R.
Mettin
,
D.
Lohse
, and
C.
Sun
, “
Dynamics of high-speed micro-drop impact: Numerical simulations and experiments at frame-to-frame times below 100 ns
,”
Soft Matter
11
,
1708
(
2015
).
65.
Z.
Pan
,
J. A.
Weibel
, and
S. V.
Garimella
, “
Transport mechanisms during water droplet evaporation on heated substrates of different wettability
,”
Int. J. Heat Mass Transfer
152
,
119524
(
2020
).
66.
Z.
Pan
,
S.
Dash
,
J. A.
Weibel
, and
S. V.
Garimella
, “
Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates
,”
Langmuir
29
(
51
),
15831
15841
(
2013
).
67.
A. L.
Karchevsky
,
I. V.
Marchuk
, and
O. A.
Kabov
, “
Calculation of the heat flux near the liquid–gas–solid contact line
,”
Appl. Math. Model.
40
(
2
),
1029
1037
(
2016
).
68.
D.
Banks
,
C.
Ajawara
,
R.
Sanchez
,
H.
Surti
, and
G.
Aguilar
, “
Effects of liquid and surface characteristics on oscillation behavior of droplets upon impact
,”
Atomization Sprays
24
(
10
),
895
913
(
2014
).
69.
H. P.
Jansen
,
H. J. W.
Zandvliet
, and
E. S.
Kooij
, “
Evaporation of elongated droplets on chemically stripe-patterned surfaces
,”
Int. J. Heat Mass Transfer
82
,
537
544
(
2015
).
70.
R.
Rioboo
,
M.
Voué
,
A.
Vaillant
, and
J.
De Coninck
, “
Drop impact on porous superhydrophobic polymer surfaces
,”
Langmuir
24
(
24
),
14074
14077
(
2008
).
71.
R.
Chen
,
L.
Jiao
,
X.
Zhu
,
Q.
Liao
,
D.
Ye
,
B.
Zhang
,
W.
Li
,
Y.
Lei
, and
D.
Li
, “
Cassie-to-Wenzel transition of droplet on the superhydrophobic surface caused by light induced evaporation
,”
Appl. Therm. Eng.
144
,
945
959
(
2018
).
72.
Y.
Tatekura
,
M.
Watanabe
,
K.
Kobayashi
, and
T.
Sanada
, “
Pressure generated at the instant of impact between a liquid droplet and solid surface
,”
R. Soc. Open Sci.
5
,
181101
(
2018
).
73.
K. R.
Langley
,
E. Q.
Li
,
I. U.
Vakarelski
, and
S. T.
Thoroddsen
, “
The air entrapment under a drop impacting on a nano-rough surface
,”
Soft Matter
14
(
37
),
7586
7596
(
2018
).
74.
S. T.
Thoroddsen
,
T. G.
Etoh
,
K.
Takehara
,
N.
Ootsuka
, and
Y.
Hatsuki
, “
The air bubble entrapped under a drop impacting on a solid surface
,”
J. Fluid Mech.
545
,
203
212
(
2005
).
75.
E. Q.
Li
and
S. T.
Thoroddsen
, “
Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface
,”
J. Fluid Mech.
780
,
636
648
(
2015
).
76.
R.
Zhang
,
P.
Hao
,
X.
Zhang
, and
F.
He
, “
Dynamics of high Weber number drops impacting on hydrophobic surfaces with closed micro-cells
,”
Soft Matter
12
(
26
),
5808
5817
(
2016
).
77.
R.
Kumar
,
R. K.
Shukla
,
A.
Kumar
, and
A.
Kumar
, “
A computational study on air entrapment and its effect on convective heat transfer during droplet impact on a substrate
,”
Int. J. Therm. Sci.
153
,
106363
(
2020
).

Supplementary Material

You do not currently have access to this content.