A new pressure-based lattice-Boltzmann method (HRR-p) is proposed for the simulation of flows for Mach numbers ranging from 0 to 1.5. Compatible with nearest-neighbor lattices (e.g., D3Q19), the model consists of a predictor step comparable to classical athermal lattice-Boltzmann methods, appended with a fully local and explicit correction step for the pressure. Energy conservation—for which the Hermitian quadrature is not accurate enough on such a lattice—is solved via a classical finite volume MUSCL-Hancock scheme based on the entropy equation. The Euler part of the model is then validated for the transport of three canonical modes (vortex, entropy, and acoustic propagation), while its diffusive/viscous properties are assessed via thermal Couette flow simulations. All results match the analytical solutions with very limited dissipation. Last, the robustness of the method is tested in a one-dimensional shock tube and a two-dimensional shock–vortex interaction.

1.
R.
Löhner
, “
Towards overcoming the LES crisis
,”
Int. J. Comput. Fluid Dyn.
33
,
87
(
2019
).
2.
Y.
Feng
,
P.
Sagaut
, and
W.-Q.
Tao
, “
A compressible lattice Boltzmann finite volume model for high subsonic and transonic flows on regular lattices
,”
Comput. Fluids
131
,
45
55
(
2016
).
3.
C.
Lin
and
K. H.
Luo
, “
Mesoscopic simulation of nonequilibrium detonation with discrete Boltzmann method
,”
Combust. Flame
198
,
356
(
2018
).
4.
Y.
Feng
,
P.
Boivin
,
J.
Jacob
, and
P.
Sagaut
, “
Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows
,”
Phys. Rev. E
100
,
023304
(
2019
).
5.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
364
(
1998
).
6.
X.
Shan
,
X.-F.
Yuan
, and
H.
Chen
, “
Kinetic theory representation of hydrodynamics: A way beyond the Navier–Stokes equation
,”
J. Fluid Mech.
550
,
413
(
2006
).
7.
X.
Shan
 et al., “
General solution of lattices for Cartesian lattice Bhatanagar-Gross-Krook models
,”
Phys. Rev. E
81
,
036702
(
2010
).
8.
Q.
Li
,
K.
Luo
,
Q.
Kang
,
Y.
He
,
Q.
Chen
, and
Q.
Liu
, “
Lattice Boltzmann methods for multiphase flow and phase-change heat transfer
,”
Prog. Energy Combust. Sci.
52
,
62
105
(
2016
).
9.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
,
The Lattice Boltzmann Method: Principles and Practice
(
Springer
,
2016
).
10.
Y.
Feng
,
P.
Boivin
,
J.
Jacob
, and
P.
Sagaut
, “
Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows
,”
J. Comput. Phys.
394
,
82
99
(
2019
).
11.
Y.
Feng
,
S.
Guo
,
J.
Jacob
, and
P.
Sagaut
, “
Solid wall and open boundary conditions in hybrid recursive regularized lattice Boltzmann method for compressible flows
,”
Phys. Fluids
31
,
126103
(
2019
).
12.
Y.
Feng
,
M.
Tayyab
, and
P.
Boivin
, “
A lattice-Boltzmann model for low-Mach reactive flows
,”
Combust. Flame
196
,
249
254
(
2018
).
13.
M.
Tayyab
,
S.
Zhao
,
Y.
Feng
, and
P.
Boivin
, “
Hybrid regularized lattice-Boltzmann modelling of premixed and non-premixed combustion processes
,”
Combust. Flame
211
,
173
184
(
2020
).
14.
F.
Renard
,
Y.
Feng
,
J.
Boussuge
, and
P.
Sagaut
, “
Improved compressible hybrid lattice Boltzmann method on standard lattice for subsonic and supersonic flows
,” arXiv:2002.03644 (
2020
).
15.
J.
Jacob
,
O.
Malaspinas
, and
P.
Sagaut
, “
A new hybrid recursive regularised Bhatnagar–Gross–Krook collision model for lattice Boltzmann method-based large eddy simulation
,”
J. Turbul.
19
,
1051
(
2018
).
16.
T.
Astoul
,
G.
Wissocq
,
J.
Boussuge
,
A.
Sengissen
, and
P.
Sagaut
, “
Analysis and reduction of spurious noise generated at grid refinement interfaces with the lattice Boltzmann method
,”
J. Comput. Phys.
109645
(
2020
).
17.
G.
Wissocq
,
P.
Sagaut
, and
J.-F.
Boussuge
, “
An extended spectral analysis of the lattice Boltzmann method: Modal interactions and stability issues
,”
J. Comput. Phys.
380
,
311
333
(
2019
).
18.
C.
Coreixas
,
G.
Wissocq
,
G.
Puigt
,
J. F.
Boussuge
, and
P.
Sagaut
, “
Recursive regularization step for high-order lattice Boltzmann methods
,”
Phys. Rev. E
96
,
033306
(
2017
).
19.
C.
Coreixas
,
B.
Chopard
, and
J.
Latt
, “
Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations
,”
Phys. Rev. E
100
,
033305
(
2019
).
20.
R.
Zhang
,
X.
He
, and
S.
Chen
, “
Interface and surface tension in incompressible lattice Boltzmann multiphase model
,”
Comput. Phys. Commun.
129
,
121
130
(
2000
).
21.
T.
Lee
and
C.-L.
Lin
, “
A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio
,”
J. Comput. Phys.
206
,
16
47
(
2005
).
22.
X.
He
,
S.
Chen
, and
R.
Zhang
, “
A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability
,”
J. Comput. Phys.
152
,
642
663
(
1999
).
23.
R.
Zhang
,
X.
He
,
G.
Doolen
, and
S.
Chen
, “
Surface tension effects on two-dimensional two-phase Kelvin–Helmholtz instabilities
,”
Adv. Water Resour.
24
,
461
478
(
2001
).
24.
X.
He
,
R.
Zhang
,
S.
Chen
, and
G.
Doolen
, “
On the three-dimensional Rayleigh–Taylor instability
,”
Phys. Fluids
11
,
1143
1152
(
1999
).
25.
Y.
Cao
, “
Variable property-based lattice Boltzmann flux solver for thermal flows in the low Mach number limit
,”
Int. J. Heat Mass Transfer
103
,
254
264
(
2016
).
26.
O.
Filippova
and
D.
Hänel
, “
A novel lattice BGK approach for low Mach number combustion
,”
J. Comput. Phys.
158
,
139
160
(
2000
).
27.
O.
Filippova
and
D.
Haenel
, “
A novel numerical scheme for reactive flows at low Mach numbers
,”
Comput. Phys. Commun.
129
,
267
274
(
2000
).
28.
M.
Ashna
and
M.
Rahimian
, “
LMB simulation of head-on collision of evaporating and burning droplets in coalescence regime
,”
Int. J. Heat Mass Transfer
109
,
520
536
(
2017
).
29.
T.
Lee
,
C.-L.
Lin
, and
L.-D.
Chen
, “
A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame
,”
J. Comput. Phys.
215
,
133
152
(
2006
).
30.
T.
Inamuro
,
T.
Ogata
,
S.
Tajima
, and
N.
Konishi
, “
A lattice Boltzmann method for incompressible two-phase flows with large density differences
,”
J. Comput. Phys.
198
,
628
644
(
2004
).
31.
S.
Mukherjee
and
J.
Abraham
, “
A pressure-evolution-based multi-relaxation-time high-density-ratio two-phase lattice-Boltzmann model
,”
Comput. Fluids
36
,
1149
1158
(
2007
).
32.
K.
Connington
,
M.
Miskin
,
T.
Lee
,
H.
Jaeger
, and
J.
Morris
, “
Lattice Boltzmann simulations of particle-laden liquid bridges: Effects of volume fraction and wettability
,”
Int. J. Multiphase Flow
76
,
32
46
(
2015
).
33.
T.
Lee
, “
Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids
,”
Comput. Math. Appl.
58
,
987
994
(
2009
).
34.
A.
Fakhari
,
M.
Geier
, and
T.
Lee
, “
A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows
,”
J. Comput. Phys.
315
,
434
457
(
2016
).
35.
K.
Sahu
and
S.
Vanka
, “
A multiphase lattice Boltzmann study of buoyancy-induced mixing in a tilted channel
,”
Comput. Fluids
50
,
199
215
(
2011
).
36.
K.
Connington
and
T.
Lee
, “
Lattice Boltzmann simulations of forced wetting transitions of drops on superhydrophobic surfaces
,”
J. Comput. Phys.
250
,
601
615
(
2013
).
37.
T.
Lee
and
L.
Liu
, “
Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces
,”
J. Comput. Phys.
229
,
8045
8063
(
2010
).
38.
L.
Amaya-Bower
and
T.
Lee
, “
Single bubble rising dynamics for moderate Reynolds number using lattice Boltzmann method
,”
Comput. Fluids
39
,
1191
1207
(
2010
).
39.
R.
Abadi
and
M.
Rahimian
, “
Hybrid lattice Boltzmann finite difference model for simulation of phase change in a ternary fluid
,”
Int. J. Heat Mass Transfer
127
,
704
716
(
2018
).
40.
E.
Reyhanian
,
M.
Rahimian
, and
S.
Farsid Chini
, “
Investigation of 2D drop evaporation on a smooth and homogeneous surface using lattice Boltzmann method
,”
Int. Commun. Heat Mass Transfer
89
,
64
72
(
2018
).
41.
H.
Safari
,
M.
Rahimian
, and
M.
Krafczyk
, “
Extended lattice Boltzmann method for simulation of thermal phase change in two-phase fluid flow
,”
Phys. Rev. E
88
,
013304
(
2013
).
42.
H.
Safari
,
M.
Rahimian
, and
M.
Krafczyk
, “
Consistent simulation of droplet evaporation based on phase-field multiphase lattice Boltzmann method
,”
Phys. Rev. E
90
,
033305
(
2014
).
43.
M.
Mohammadi-Shad
and
T.
Lee
, “
Phase-field lattice Boltzmann modelling of boiling using a sharp-interface energy solver
,”
Phys. Rev. E
96
,
013306
(
2017
).
44.
R.
Knikker
, “
A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows
,”
Int. J. Numer. Methods Fluids
66
,
403
427
(
2011
).
45.
N.
Kwatra
,
J.
Su
,
J.
Grétarsson
, and
R.
Fedkiw
, “
A method for avoiding the acoustic time step restriction in compressible flow
,”
J. Comput. Phys.
228
,
4146
4162
(
2009
).
46.
K.
Nerinckx
,
J.
Vierendeels
, and
E.
Dick
, “
Mach-uniformity through the coupled pressure and temperature correction algorithm
,”
J. Comput. Phys.
206
,
597
623
(
2005
).
47.
G.
Hauke
,
A.
Landaberea
,
I.
Garmendia
, and
J.
Canales
, “
A segregated method for compressible flow computation Part I: Isothermal compressible flows
,”
Int. J. Numer. Methods Fluids
47
,
271
323
(
2005
).
48.
G.
Hauke
,
A.
Landaberea
,
I.
Garmendia
, and
J.
Canales
, “
A segregated method for compressible flow computation. Part II: General divariant compressible flows
,”
Int. J. Numer. Methods Fluids
49
,
183
209
(
2005
).
49.
M.
Darwish
,
F.
Moukalled
, and
B.
Sekar
, “
A unified formulation of the segregated class of algorithms for multifluid flow at all speeds
,”
Numer. Heat Transfer, Part B
40
,
99
137
(
2001
).
50.
F.
Moukalled
and
M.
Darwish
, “
Pressure-based algorithms for multifluid flow at all speeds—Part I: Mass conservation formulation
,”
Numer. Heat Transfer, Part B
45
,
495
522
(
2004
).
51.
A.
Chorin
, “
A numerical method for solving incompressible viscous flow problems
,”
J. Comput. Phys.
2
,
12
26
(
1967
).
52.
A.
Chorin
, “
Numerical solution of the Navier-Stokes equations
,”
Math. Comput.
22
,
745
762
(
1968
).
53.
C.
Hirt
and
B.
Nichols
, “
Adding limited compressibility to incompressible hydrocodes
,”
J. Comput. Phys.
34
,
390
400
(
1980
).
54.
P.
Madsen
and
H.
Schäffer
, “
A discussion of artificial compressibility
,”
Coastal Eng.
53
,
93
98
(
2006
).
55.
W.
Kim
and
S.
Menon
, “
An unsteady incompressible Navier-Stokes solver for large eddy simulation of turbulent flows
,”
Int. J. Numer. Methods Fluids
31
,
983
1017
(
1999
).
56.
A.
Kajzer
and
J.
Pozorski
, “
Application of the entropically damped artificial compressibility model to direct numerical simulation of turbulent channel flow
,”
Comput. Math. Appl.
76
,
997
1013
(
2018
).
57.
A.
Toutant
, “
Numerical simulations of unsteady viscous incompressible flows using general pressure equation
,”
J. Comput. Phys.
374
,
822
842
(
2018
).
58.
X.
He
,
G. D.
Doolen
, and
T.
Clark
, “
Comparison of the lattice Boltzmann method and the artificial compressibility method for Navier–Stokes equations
,”
J. Comput. Phys.
179
,
439
451
(
2002
).
59.
P.
Asinari
,
T.
Ohwada
,
E.
Chiavazzo
, and
A.
Di Rienzo
, “
Link-wise artificial compressibility method
,”
J. Comput. Phys.
231
,
5109
5143
(
2012
).
60.
T.
Lee
and
C.-L.
Lin
, “
Pressure evolution lattice-Boltzmann-equation method for two-phase flow with phase change
,”
Phys. Rev. E
67
,
056703
(
2003
).
61.
S.
Karni
, “
Hybrid multifluid algorithms
,”
SIAM J. Sci. Comput.
17
,
1019
1039
(
1996
).
62.
R.
Abgrall
and
S.
Karni
, “
Computations of compressible multifluids
,”
J. Comput. Phys.
169
,
594
623
(
2001
).
63.
A.
Toutant
, “
General and exact pressure evolution equation
,”
Phys. Lett. A
381
,
3739
3742
(
2017
).
64.
J.
Jacob
and
P.
Sagaut
, “
Wind comfort assessment by means of large eddy simulation with lattice Boltzmann method in full scale city area
,”
Build. Environ.
139
,
110
124
(
2018
).
65.
P. J.
Dellar
, “
An interpretation and derivation of the lattice Boltzmann method using strang splitting
,”
Comput. Math. Appl.
65
,
129
141
(
2013
).
66.
Y.-L.
Feng
,
S.-L.
Guo
,
W.-Q.
Tao
, and
P.
Sagaut
, “
Regularized thermal lattice Boltzmann method for natural convection with large temperature differences
,”
Int. J. Heat Mass Transfer
125
,
1379
1391
(
2018
).
67.
S.
Marié
,
D.
Ricot
, and
P.
Sagaut
, “
Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics
,”
J. Comput. Phys.
228
,
1056
1070
(
2009
).
68.
D.
Fabre
,
L.
Jacquin
, and
J.
Sesterhenn
, “
Linear interaction of a cylindrical entropy spot with a shock
,”
Phys. Fluids
13
,
2403
2422
(
2001
).
69.
H. W.
Liepmann
and
A.
Roshko
,
Elements of Gasdynamics
(
Courier Corporation
,
2001
).
70.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
(
Springer Science & Business Media
,
2009
).
71.
O.
Inoue
and
Y.
Hattori
, “
Sound generation by shock–vortex interactions
,”
J. Fluid Mech.
380
,
81
116
(
1999
).
You do not currently have access to this content.