Heat transfer enhancement due to flapping flags in a heated duct flow is studied using three-dimensional (3D) fully coupled fluid–structure–thermal simulations. Following prior work, which was limited to two-dimensional models, we examine the mechanisms and the heat transfer performance for a more realistic, 3D model of a flag in a rectangular duct heat exchanger. We then examine the role of the flag aspect-ratio and spanwise confinement, which are key design parameters for this device. We find that the narrow flags do not exhibit sufficiently energetic flapping to generate any meaningful heat transfer enhancement. We also find that the wide flags significantly increase heat flux and an increase in the width of the flag can further increase the thermal enhancement factor.

1.
Ahmed
,
H. E.
,
Mohammed
,
H. A.
, and
Yusoff
,
M. Z.
, “
An overview on heat transfer augmentation using vortex generators and nanofluids: Approaches and applications
,”
Renewable Sustainable Energy Rev.
16
(
8
),
5951
5993
(
2012
).
2.
Alam
,
T.
,
Saini
,
R. P.
, and
Saini
,
J. S.
, “
Use of turbulators for heat transfer augmentation in an air duct—A review
,”
Renewable Energy
62
,
689
715
(
2014
).
3.
Anxionnaz
,
Z.
,
Cabassud
,
M.
,
Gourdon
,
C.
, and
Tochon
,
P.
, “
Heat exchanger/reactors (HEX reactors): Concepts, technologies: State-of-the-art
,”
Chem. Eng. Process.
47
(
12
),
2029
2050
(
2008
).
4.
Balint
,
T. S.
and
Lucey
,
A. D.
, “
Instability of a cantilevered flexible plate in viscous channel flow
,”
J. Fluids Struct.
20
(
7
),
893
912
(
2005
).
5.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
Lavine
,
A. S.
, and
DeWitt
,
D. P.
,
Introduction to Heat Transfer
(
Wiley
,
2011
).
6.
Bhagoria
,
J. L.
,
Saini
,
J. S.
, and
Solanki
,
S. C.
, “
Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate
,”
Renewable Energy
25
(
3
),
341
369
(
2002
).
7.
Doaré
,
O.
,
Sauzade
,
M.
, and
Eloy
,
C.
, “
Flutter of an elastic plate in a channel flow: Confinement and finite-size effects
,”
J. Fluids Struct.
27
(
1
),
76
88
(
2011
).
8.
Eloy
,
C.
,
Lagrange
,
R.
,
Souilliez
,
C.
, and
Schouveiler
,
L.
, “
Aeroelastic instability of cantilevered flexible plates in uniform flow
,”
J. Fluid Mech.
611
,
97
106
(
2008
).
9.
Gallegos
,
R. K. B.
and
Sharma
,
R. N.
, “
Flags as vortex generators for heat transfer enhancement: Gaps and challenges
,”
Renewable Sustainable Energy Rev.
76
,
950
962
(
2017
).
10.
Gee
,
D. L.
and
Webb
,
R. L.
, “
Forced convection heat transfer in helically rib-roughened tubes
,”
Int. J. Heat Mass Transfer
23
(
8
),
1127
1136
(
1980
).
11.
Gilson
,
G. M.
,
Pickering
,
S. J.
,
Hann
,
D. B.
, and
Gerada
,
C.
, “
Piezoelectric fan cooling: A novel high reliability electric machine thermal management solution
,”
IRE Trans. Ind. Electron.
60
(
11
),
4841
4851
(
2012
).
12.
Guo
,
C. Q.
and
Paidoussis
,
M. P.
, “
Stability of rectangular plates with free side-edges in two-dimensional inviscid channel flow
,”
J. Appl. Mech.
67
(
1
),
171
176
(
2000
).
13et al..
Herrault
,
F.
,
Hidalgo
,
P. A.
,
Ji
,
C.-H.
,
Glezer
,
A.
, and
Allen
,
M. G.
, “
Cooling performance of micromachined self-oscillating reed actuators in heat transfer channels with integrated diagnostics
,” in
paper presented at the IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS)
(
IEEE
,
2012
), pp.
1217
1220
.
14.
Huang
,
W.-X.
and
Sung
,
H. J.
, “
Three-dimensional simulation of a flapping flag in a uniform flow
,”
J. Fluid Mech.
653
,
301
336
(
2010
).
15.
Jeong
,
J.
and
Hussain
,
F.
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
16.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
, “
A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
,”
J. Comput. Phys.
227
(
10
),
4825
4852
(
2008
).
17.
Orrego
,
S.
,
Shoele
,
K.
,
Ruas
,
A.
,
Doran
,
K.
,
Caggiano
,
B.
,
Mittal
,
R.
, and
Kang
,
S. H.
, “
Harvesting ambient wind energy with an inverted piezoelectric flag
,”
Appl. Energy
194
,
212
222
(
2017
).
18.
Ozceyhan
,
V.
,
Gunes
,
S.
,
Buyukalaca
,
O.
, and
Altuntop
,
N.
, “
Heat transfer enhancement in a tube using circular cross sectional rings separated from wall
,”
Appl. Energy
85
(
10
),
988
1001
(
2008
).
19.
Peskin
,
C. S.
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
20.
Promvonge
,
P.
,
Chompookham
,
T.
,
Kwankaomeng
,
S.
, and
Thianpong
,
C.
, “
Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators
,”
Energy Convers. Manage.
51
(
6
),
1242
1249
(
2010
).
21.
Promvonge
,
P.
and
Thianpong
,
C.
, “
Thermal performance assessment of turbulent channel flows over different shaped ribs
,”
Int. Commun. Heat Mass Transfer
35
(
10
),
1327
1334
(
2008
).
22.
Rips
,
A.
and
Mittal
,
R.
, “
Flutter-enhanced mixing in small-scale mixers
,”
Phys. Fluids
31
(
10
),
107107
(
2019
).
23et al..
Rips
,
A.
,
Shoele
,
K.
,
Glezer
,
A.
, and
Mittal
,
R.
, “
Efficient electronic cooling via flow-induced vibrations
,”
paper presented at the 33rd Thermal Measurement, Modeling and Management Symposium (SEMI-THERM)
(
IEEE
,
2017
), pp.
36
39
.
24.
Seo
,
J. H.
and
Mittal
,
R.
, “
A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations
,”
J. Comput. Phys.
230
(
19
),
7347
7363
(
2011
).
25.
Shoele
,
K.
and
Mittal
,
R.
, “
Computational study of flow-induced vibration of a reed in a channel and effect on convective heat transfer
,”
Phys. Fluids
26
(
12
),
127103
(
2014
).
26.
Shoele
,
K.
and
Mittal
,
R.
, “
Energy harvesting by flow-induced flutter in a simple model of an inverted piezoelectric flag
,”
J. Fluid Mech.
790
,
582
606
(
2016
).
27.
Shoele
,
K.
and
Zhu
,
Q.
, “
Leading edge strengthening and the propulsion performance of flexible ray fins
,”
J. Fluid Mech.
693
,
402
432
(
2012
).
28.
Solano
,
T.
,
Ordonez
,
J. C.
, and
Shoele
,
K.
, “
Flapping dynamics of a flag in the presence of thermal convection
,”
J. Fluid Mech.
895
,
A8
(
2020
).
29.
Sudevalayam
,
S.
and
Kulkarni
,
P.
, “
Energy harvesting sensor nodes: Survey and implications
,”
IEEE Commun. Surv. Tutor.
13
(
3
),
443
461
(
2010
).
30.
Tsia
,
J. P.
and
Hwang
,
J. J.
, “
Measurements of heat transfer and fluid flow in a rectangular duct with alternate attached-detached rib-arrays
,”
Int. J. Heat Mass Transfer
42
(
11
),
2071
2083
(
1999
).
31.
Watanabe
,
Y.
,
Suzuki
,
S.
,
Sugihara
,
M.
, and
Sueoka
,
Y.
, “
An experimental study of paper flutter
,”
J. Fluids Struct.
16
(
4
),
529
542
(
2002
).
32.
Webb
,
R. L.
, “
Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design
,”
Int. J. Heat Mass Transfer
24
(
4
),
715
726
(
1981
).
33et al..
Zhu
,
C.
,
Seo
,
J. H.
,
Vedula
,
V.
, and
Mittal
,
R.
, “
A highly scalable sharp-interface immersed boundary method for large-scale parallel computers
,”
paper presented at the 23rd AIAA Computational Fluid Dynamics Conference
(
AIAA
,
2017
), p.
3622
.
You do not currently have access to this content.