The present study is concerned with possible mechanisms of air entrainment in a thin liquid layer caused by oblique impact of a deformable body on the layer. The two-dimensional unsteady problem of oblique elastic plate impact is considered within the thin-layer approximation for the first time. The plate deflection is described by the Euler beam equation. The plate edges are free of stresses and shear forces. The plate deflections are comparable with the liquid layer thickness. It is revealed in this paper that, for a stiff plate, the initial impact by the trailing edge makes the plate rotate with the leading plate edge entering water before the wetted part of the plate arrives at this edge. The air cavity trapped in such cases can be as long as 40% of the plate length. For a flexible plate, the impact does not cause the plate rotation. However, the dry part of the plate in front of the advancing wetted region is deflected toward the liquid layer also trapping the air. The numerical results are presented for elastic and rigid motions of the plate, hydrodynamic pressure in the wetted part of the plate, position of this wetted part, and the flow beneath the plate.

1.
Alekseenko
,
S. V.
,
Nakoriakov
,
V. E.
,
Pokusaev
,
B. G.
, and
Fukano
,
T.
,
Wave Flow of Liquid Films
(
Begell House
,
New York
,
1994
).
2.
Batyaev
,
E. A.
and
Khabakhpasheva
,
T. I.
, “
Initial stage of the inclined impact of a smooth body on a thin fluid layer
,”
Fluid Dyn.
48
(
2
),
211
222
(
2013
).
3.
Batyaev
,
E. A.
and
Khabakhpasheva
,
T. I.
, “
Oblique impact of an elongated three-dimensional body on a thin liquid layer
,”
J. Appl. Mech. Tech. Phys.
57
(
1
),
163
172
(
2016
).
4.
Belden
,
J.
,
Hurd
,
R. C.
,
Jandron
,
M. A.
,
Bower
,
A. F.
, and
Truscott
,
T. T.
, “
Elastic spheres can walk on water
,”
Nat. Commun.
7
(
1
),
1
10
(
2016
).
5.
Birkhoff
,
G.
and
Zarantonello
,
E.
,
Jets, Wakes and Cavities
(
Academic Press
,
New York
,
1957
).
6.
Chang
,
H. H.
and
Demekhin
,
E. A.
,
Complex Wave Dynamics on Thin Films
(
Elsevier
,
2002
).
7.
Cherdantsev
,
A. V.
,
Hann
,
D. B.
,
Hewakandamby
,
B. N.
, and
Azzopardi
,
B. J.
, “
Study of the impacts of droplets deposited from the gas core onto a gas-sheared liquid film
,”
Int. J. Multiphase Flow
88
,
69
86
(
2017
).
8.
Faltinsen
,
O. M.
and
Semenov
,
Y. A.
, “
The effect of gravity and cavitation on a hydrofoil near the free surface
,”
J. Fluid Mech.
597
,
371
394
(
2008
).
9.
Hicks
,
P. D.
and
Purvis
,
R.
, “
Air cushioning and bubble entrapment in three-dimensional droplet impacts
,”
J. Fluid Mech.
649
,
135
163
(
2010
).
10.
Hicks
,
P. D.
and
Purvis
,
R.
, “
Air cushioning in droplet impacts with liquid layers and other droplets
,”
Phys. Fluids
23
(
6
),
062104
(
2011
).
11.
Hurd
,
R. C.
,
Belden
,
J.
,
Bower
,
A. F.
,
Holekamp
,
S.
,
Jandron
,
M. A.
, and
Truscott
,
T. T.
, “
Water walking as a new mode of free surface skipping
,”
Sci. Rep.
9
(
1
),
1
9
(
2019
).
12.
Iafrati
,
A.
, “
Experimental investigation of the water entry of a rectangular plate at high horizontal velocity
,”
J. Fluid Mech.
799
,
637
672
(
2016
).
13.
Iafrati
,
A.
and
Grizzi
,
S.
, “
Cavitation and ventilation modalities during ditching
,”
Phys. Fluids
31
(
5
),
052101
(
2019
).
14.
Khabakhpasheva
,
T. I.
, “
Fluid-structure interaction during the impact of a cylindrical shell on a thin layer of water
,”
J. Fluids Struct.
25
(
3
),
431
444
(
2009
).
15.
Khabakhpasheva
,
T. I.
, “
Impact of an elastic spherical shell on a thin fluid layer
,”
Fluid Dyn.
50
(
2
),
250
262
(
2015
).
16.
Khabakhpasheva
,
T. I.
and
Korobkin
,
A. A.
, “
Oblique impact of a smooth body on a thin layer of inviscid liquid
,”
Proc. R. Soc. A
469
(
2151
),
20120615
(
2013a
).
17.
Khabakhpasheva
,
T. I.
and
Korobkin
,
A. A.
, “
Multiple oblique impacts on thin liquid layer with restoring forces
,” in
Proceeding 28th International Workshop on Water Waves and Floating Bodies
(
L’Isle sur la Sourgue
,
France
,
2013b
), pp.
101
104
, http://www.iwwwfb.org/Abstracts/iwwwfb28/iwwwfb28_26.pdf.
18.
Korobkin
,
A.
, “
Impact of two bodies one of which is covered by a thin layer of liquid
,”
J. Fluid Mech.
300
,
43
58
(
1995
).
19.
Korobkin
,
A.
, “
Shallow-water impact problems
,”
J. Eng. Math.
35
(
1-2
),
233
250
(
1999
).
20.
Korobkin
,
A. A.
, “
Wave impact on the center of an Euler beam
,”
J. Appl. Mech. Tech. Phys.
39
(
5
),
770
781
(
1998
).
21.
Korobkin
,
A. A.
and
Khabakhpasheva
,
T. I.
, “
Plane problem of asymmetrical wave impact on an elastic plate
,”
J. Appl. Mech. Tech. Phys.
39
(
5
),
782
791
(
1998
).
22.
Korobkin
,
A. A.
and
Khabakhpasheva
,
T. I.
, “
Regular wave impact onto an elastic plate
,”
J. Eng. Math.
55
,
127
150
(
2006
).
23.
Korobkin
,
A. A.
and
Khabakhpasheva
,
T. I.
, “
Impact of elastic body on the deep and shallow water
,” in
ASME 2013, 32nd International Conference on Ocean, Offshore and Arctic Engineering
,
2013
, Paper No. OMAE2013-11373, V009T12A052.
24.
Kvålsvold
,
J.
, “
Slamming loads on wetdecks of multihull vessels
,” in
Proceedings of the International Conference on Hydroelasticity in Marine Technology, Trondheim, Norway
(
Balkema
,
Rotterdam, The Netherlands
,
1994
), Paper No. P1994-9, ISBN: 90 5410 387 6.
25.
Liu
,
J.
, “
Shallow-water skimming, skipping and rebound problems
,” Ph.D. thesis,
UCL (University College London)
,
UK
,
2017
.
26.
Moradi
,
H.
,
Rahbar Ranji
,
A.
, and
Haddadpour
,
H.
, “
Hydroelastic criterion for an inclined flat plate in vertical and oblique impacts
,”
Appl. Ocean Res.
79
,
173
183
(
2018
).
27.
Reinhard
,
M.
, “
Free elastic plate impact into water
,” Ph.D. thesis,
UEA (University of East Anglia)
,
UK
,
2013
.
28.
Reinhard
,
M.
,
Korobkin
,
A. A.
, and
Cooker
,
M. J.
, “
Water entry of a flat elastic plate at high horizontal speed
,”
J. Fluid Mech.
724
,
123
153
(
2013
).
29.
Tkacheva
,
L. A.
, “
Impact of a box with an elastic bottom on a thin liquid layer
,”
J. Appl. Mech. Tech. Phys.
72
(
4
),
427
436
(
2008
).
30.
Tkacheva
,
L. A.
, “
Impact of a body with a plane bottom on a thin liquid layer at a small angle
,”
Fluid Dyn.
48
(
3
),
352
365
(
2013
).
31.
Tuck
,
E. O.
and
Dixon
,
A.
, “
Surf-skimmer planing hydrodynamics
,”
J. Fluid Mech.
205
,
581
592
(
1989
).
32.
Vanden-Broeck
,
J.-M.
, “
Numerical solutions for cavitating flow of a fluid with surface tension past a curved obstacle
,”
Phys. Fluids
27
(
11
),
2601
2603
(
1984
).
You do not currently have access to this content.