The present study is concerned with possible mechanisms of air entrainment in a thin liquid layer caused by oblique impact of a deformable body on the layer. The two-dimensional unsteady problem of oblique elastic plate impact is considered within the thin-layer approximation for the first time. The plate deflection is described by the Euler beam equation. The plate edges are free of stresses and shear forces. The plate deflections are comparable with the liquid layer thickness. It is revealed in this paper that, for a stiff plate, the initial impact by the trailing edge makes the plate rotate with the leading plate edge entering water before the wetted part of the plate arrives at this edge. The air cavity trapped in such cases can be as long as 40% of the plate length. For a flexible plate, the impact does not cause the plate rotation. However, the dry part of the plate in front of the advancing wetted region is deflected toward the liquid layer also trapping the air. The numerical results are presented for elastic and rigid motions of the plate, hydrodynamic pressure in the wetted part of the plate, position of this wetted part, and the flow beneath the plate.
Skip Nav Destination
Article navigation
June 2020
Research Article|
June 01 2020
Oblique elastic plate impact on thin liquid layer
T. I. Khabakhpasheva
;
T. I. Khabakhpasheva
a)
1
Lavrentyev Institute of Hydrodynamics
, pr. Lavrentyeva 15, Novosibirsk 630090, Russia
a)Author to whom correspondence should be addressed: tana@hydro.nsc.ru
Search for other works by this author on:
A. A. Korobkin
A. A. Korobkin
b)
1
Lavrentyev Institute of Hydrodynamics
, pr. Lavrentyeva 15, Novosibirsk 630090, Russia
2
University of East Anglia
, Norwich NR4 7TJ, United Kingdom
Search for other works by this author on:
a)Author to whom correspondence should be addressed: tana@hydro.nsc.ru
b)
Electronic mail: a.korobkin@uea.ac.uk
Physics of Fluids 32, 062101 (2020)
Article history
Received:
March 11 2020
Accepted:
May 12 2020
Citation
T. I. Khabakhpasheva, A. A. Korobkin; Oblique elastic plate impact on thin liquid layer. Physics of Fluids 1 June 2020; 32 (6): 062101. https://doi.org/10.1063/5.0007121
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
On Oreology, the fracture and flow of “milk's favorite cookie®”
Crystal E. Owens, Max R. Fan (范瑞), et al.
Fluid–structure interaction on vibrating square prisms considering interference effects
Zengshun Chen (陈增顺), 陈增顺, et al.
A unified theory for bubble dynamics
A-Man Zhang (张阿漫), 张阿漫, et al.