We study exact solutions for the slow viscous flow of an infinite liquid caused by two rigid spheres approaching each either along or parallel to their line of centers, valid at all separations. This goes beyond the applicable range of existing solutions for singular hydrodynamic interactions (HIs), which, for practical applications, are limited to the near-contact or far field region of the flow. For the normal component of the HI, by the use of a bipolar coordinate system, we derive the stream function for the flow as the Reynolds number (Re) tends to zero and a formula for the singular (squeeze) force between the spheres as an infinite series. We also obtain the asymptotic behavior of the forces as the nondimensional separation between the spheres goes to zero and infinity, rigorously confirming and improving upon the known results relevant to a widely accepted lubrication theory. Additionally, we recover the force on a sphere moving perpendicularly to a plane as a special case. For the tangential component, again by using a bipolar coordinate system, we obtain the corresponding infinite series expression of the (shear) singular force between the spheres. All results hold for retreating spheres, consistent with the reversibility of Stokes flow. We demonstrate substantial differences in numerical simulations of colloidal fluids when using the present theory compared with the existing multipole methods. Furthermore, we show that the present theory preserves positive definiteness of the resistance matrix R in a number of situations in which positivity is destroyed for multipole/perturbative methods.

1.
A.
Fall
,
N.
Huang
,
F.
Bertrand
,
G.
Ovarlez
, and
D.
Bonn
, “
Shear thickening of cornstarch suspensions as a reentrant jamming transition
,”
Phys. Rev. Lett.
100
,
018301
(
2008
).
2.
N. Y. C.
Lin
,
B. M.
Guy
,
M.
Hermes
,
C.
Ness
,
J.
Sun
,
W. C. K.
Poon
, and
I.
Cohen
, “
Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,”
Phys. Rev. Lett.
115
,
228304
(
2015
).
3.
E. W.
Errill
, “
Rheology of blood
,”
Physiol. Rev.
49
,
863
888
(
1969
).
4.
R. A.
Bagnold
, “
Auto-suspension of transported sediment; turbidity currents
,”
Proc. R. Soc. London, Ser. A
265
,
315
319
(
1962
).
5.
B. D.
Goddard
,
A.
Nold
,
N.
Savva
,
G. A.
Pavliotis
, and
S.
Kalliadasis
, “
General dynamical density functional theory for classical fluids
,”
Phys. Rev. Lett.
109
,
120603
(
2012
).
6.
R. C.
Ball
and
J. R.
Melrose
, “
A simulation technique for many spheres in quasi-static motion under frame-invariant pair drag and Brownian forces
,”
Physica A
247
,
444
472
(
1997
).
7.
M.
Plischke
and
B.
Bergersen
,
Equilibrium Statistical Physics
(
World Scientific Publishing Company
,
1994
).
8.
J.
Rotne
and
S.
Prager
, “
Variational treatment of hydrodynamic interaction in polymers
,”
J. Chem. Phys.
50
,
4831
4837
(
1969
).
9.
G.
Bossis
and
J. F.
Brady
, “
Dynamic simulation of sheared suspensions. I. General method
,”
J. Chem. Phys.
80
,
5141
5154
(
1984
).
10.
D. J.
Evans
and
G. P.
Morriss
, “
Shear thickening and turbulence in simple fluids
,”
Phys. Rev. Lett.
56
,
2172
(
1986
).
11.
B. D.
Goddard
,
A.
Nold
,
N.
Savva
,
P.
Yatsyshin
, and
S.
Kalliadasis
, “
Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: Derivation and numerical experiments
,”
J. Phys.: Condens. Matter
25
,
035101
(
2012
).
12.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Courier Corporation
,
2013
).
13.
M.
Stimson
and
G. B.
Jeffery
, “
The motion of two spheres in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
111
,
110
116
(
1926
).
14.
A. J.
Goldman
,
R. G.
Cox
, and
H.
Brenner
, “
The slow motion of two identical arbitrarily oriented spheres through a viscous fluid
,”
Chem. Eng. Sci.
21
,
1151
1170
(
1966
).
15.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Science & Business Media
,
2012
), Vol. 1.
16.
A. K.
Townsend
, “
Generating, from scratch, the near-field asymptotic forms of scalar resistance functions for two unequal rigid spheres in low-Reynolds-number flow
,” arXiv:1802.08226 (
2018
).
17.
D. J.
Jeffrey
and
Y.
Onishi
, “
Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow
,”
J. Fluid Mech.
139
,
261
290
(
1984
).
18.
H.
Faxén
, “
Die geschwindigkeit zweier kugeln, die unter einwirkung der schwere in einer zähen flüssigkeit fallen
,”
Z. Angew. Math. Mech.
7
,
79
81
(
1927
).
19.
E. N.
Bart
, “
Interaction of two spheres falling slowly in a viscous medium
,” Ph.D. thesis,
New York University
,
1959
.
20.
A. D.
Maude
, “
End effects in a falling-sphere viscometer
,”
Br. J. Appl. Phys.
12
,
293
(
1961
).
21.
M. E.
O’Neill
, “
A slow motion of viscous liquid caused by a slowly moving solid sphere
,”
Mathematika
11
,
67
74
(
1964
).
22.
M. E.
O’Neill
and
R.
Majumdar
, “
Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part I: The determination of exact solutions for any values of the ratio of radii and separation parameters
,”
Z. Angew. Math. Phys.
21
,
164
179
(
1970
).
23.
R. G.
Cox
and
H.
Brenner
, “
The slow motion of a sphere through a viscous fluid towards a plane surface-II small gap widths, including inertial effects
,”
Chem. Eng. Sci.
22
,
1753
1777
(
1967
).
24.
R. E.
Hansford
, “
On converging solid spheres in a highly viscous fluid
,”
Mathematika
17
,
250
254
(
1970
).
25.
H.
Brenner
, “
The slow motion of a sphere through a viscous fluid towards a plane surface
,”
Chem. Eng. Sci.
16
,
242
251
(
1961
).
26.
D.
Papavassiliou
and
G. P.
Alexander
, “
Exact solutions for hydrodynamic interactions of two squirming spheres
,”
J. Fluid Mech.
813
,
618
646
(
2017
).
27.
E.
Wacholder
and
D.
Weihs
, “
Slow motion of a fluid sphere in the vicinity of another sphere or a plane boundary
,”
Chem. Eng. Sci.
27
,
1817
1828
(
1972
).
28.
S.
Haber
,
G.
Hetsroni
, and
A.
Solan
, “
On the low Reynolds number motion of two droplets
,”
Int. J. Multiphase Flow.
1
,
57
71
(
1973
).
29.
D. J.
Jeffrey
, “
Low-Reynolds-number flow between converging spheres
,”
Mathematika
29
,
58
66
(
1982
).
30.
A. K.
Townsend
and
H. J.
Wilson
, “
Anomalous effect of turning off long-range mobility interactions in Stokesian dynamics
,”
Phys. Fluids
30
,
077103
(
2018
).
31.
G. A.
Jeffery
, “
On a form of the solution of Laplace’s equation suitable for problems relating to two spheres
,”
Proc. R. Soc. London, Ser. A
87
,
109
120
(
1912
).
32.
P.
Moon
and
D. E.
Spencer
, “
Eleven coordinate systems
,” in
Field Theory Handbook
(
Springer
,
1961
), pp.
1
48
.
33.
P. H.
Gilbert
and
A. J.
Giacomin
, “
Transport phenomena in bispherical coordinates
,”
Phys. Fluids
31
,
021208
(
2019
).
34.
L. E.
Payne
and
W. H.
Pell
, “
The Stokes flow problem for a class of axially symmetric bodies
,”
J. Fluid Mech.
7
,
529
549
(
1960
).
35.
D. J.
Jeffrey
, Programs for Stokes Resistance Functions, https://www.uwo.ca/apmaths/faculty/jeffrey/research/Resistance.html; accessed 01 March 2019.
36.
D. J.
Jeffrey
, “
The calculation of the low Reynolds number resistance functions for two unequal spheres
,”
Phys. Fluids A
4
,
16
29
(
1992
).
37.
D. J.
Jeffrey
, Programs for Stokes Resistance Functions, first 300 terms of X11A Eq. (3.13), https://www.uwo.ca/apmaths/faculty/jeffrey/research/resistancefunctions/xa/rxa300.dat.txt; accessed 01 March 2019.
38.
L. N.
Trefethen
and
D.
Bau
 III
,
Numerical Linear Algebra
(
Siam
,
1997
), Vol. 50.
39.
Y.
Rosenfeld
, “
Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing
,”
Phys. Rev. Lett.
63
,
980
(
1989
).
40.
R.
Roth
, “
Fundamental measure theory for hard-sphere mixtures: A review
,”
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
41.
B. D.
Goddard
,
A.
Nold
, and
S.
Kalliadasis
, “
Multi-species dynamical density functional theory
,”
J. Chem. Phys.
138
,
144904
(
2013
).
42.
B. D.
Goddard
,
A.
Nold
, and
S.
Kalliadasis
, 2DChebClass (Software), ,
2017
.
43.
A.
Nold
,
B. D.
Goddard
,
P.
Yatsyshin
,
N.
Savva
, and
S.
Kalliadasis
, “
Pseudospectral methods for density functional theory in bounded and unbounded domains
,”
J. Comput. Phys.
334
,
639
664
(
2017
).
44.
B. D.
Goddard
,
A.
Nold
, and
S.
Kalliadasis
, “
Dynamical density functional theory with hydrodynamic interactions in confined geometries
,”
J. Chem. Phys.
145
,
214106
(
2016
).
45.
C.
Ness
and
J.
Sun
, “
Shear thickening regimes of dense non-Brownian suspensions
,”
Soft Matter
12
,
914
924
(
2016
).
46.
N.
Nguyen
and
A.
Ladd
, “
Lubrication corrections for lattice-Boltzmann simulations of particle suspensions
,”
Phys. Rev. E
66
,
046708
(
2002
).
47.
J. F.
Brady
and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
157
(
1988
).
48.
A.
Lefebvre-Lepot
,
B.
Merlet
, and
T. N.
Nguyen
, “
An accurate method to include lubrication forces in numerical simulations of dense Stokesian suspensions
,”
J. Fluid Mech.
769
,
369
386
(
2015
).
49.
A. J.
Archer
, “
Dynamical density functional theory for molecular and colloidal fluids: A microscopic approach to fluid mechanics
,”
J. Chem. Phys.
130
,
014509
(
2009
).
50.
M. A.
Durán-Olivencia
,
B. D.
Goddard
, and
S.
Kalliadasis
, “
Dynamical density functional theory for orientable colloids including inertia and hydrodynamic interactions
,”
J. Stat. Phys.
164
,
785
809
(
2016
).
51.
R. G.
Cox
, “
The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow
,”
J. Fluid Mech.
168
,
169
194
(
1986
).
52.
P. A.
Thompson
and
S. M.
Troian
, “
A general boundary condition for liquid flow at solid surfaces
,”
Nature
389
,
360
(
1997
).
53.
E. J.
Hinch
,
Perturbation Methods
(
Cambridge University Press
,
1991
).
54.
V.
Kac
and
P.
Cheung
,
Quantum Calculus
(
Springer Science & Business Media
,
2001
).
55.
A.
Weinstein
, “
Discontinuous integrals and generalized potential theory
,”
J. Am. Math. Soc.
63
,
342
354
(
1948
).
56.
L. E.
Payne
, “
Representation formulas for solutions of a class of partial differential equations
,”
J. Math. Phys.
38
,
145
149
(
1959
).
You do not currently have access to this content.