Marine measurement instrumentation, such as free-floating wave buoys, drones, and autonomous unmanned vehicles, often propagates in different directions and velocities relative to the fluid and waves. Convention assumes that these different instrumentations provide Galilean invariant descriptions of the wave field. Herein, it is shown that Galilean invariance exists for the water wave problem only in a restricted sense. The impact of this loss of invariance is investigated using a new formulation of the water wave problem, which is generalized for both current and an arbitrary inertial viewer. In the still water limit, the boundary value problem is shown to be non-invariant under Galilean transformations. This impacts the dispersion relation and interpretation of measurements. It also explains the appearance of wave modes on current, which have no analogy on still water. These modes do not appear in a still water formulation because it is a degenerate representation exhibiting a loss of Galilean symmetries. The approach provides a more complete solution of the wave–current boundary value problem by making a clear distinction between current and viewer velocity effects. Numerical examples that demonstrate the importance of the results on calculating wave characteristics are given.

1.
G.
Rosen
, “
Galilean invariance and the general covariance of nonrelativistic laws
,”
Am. J. Phys.
40
(
5
),
683
687
(
1972
).
2.
D.
Bedford
and
R.
Lindsay
, “
A misinterpretation of Bernoulli’s theorem
,”
Phys. Educ.
12
(
5
),
311
(
1977
).
3.
C. E.
Mungan
, “
The Bernoulli equation in a moving reference frame
,”
Eur. J. Phys.
32
(
2
),
517
(
2011
).
4.
D.
Clamond
, “
Remarks on Bernoulli constants, gauge conditions and phase velocities in the context of water waves
,”
Appl. Math. Lett.
74
,
114
120
(
2017
).
5.
V.
Vasan
and
B.
Deconinck
, “
The Bernoulli boundary condition for traveling water waves
,”
Appl. Math. Lett.
26
(
4
),
515
519
(
2013
).
6.
S.
Liberati
,
S.
Sonego
, and
M.
Visser
, “
Faster-than-c signals, special relativity, and causality
,”
Ann. Phys.
298
(
1
),
167
185
(
2002
).
7.
A.
Duran
,
D.
Dutykh
, and
D.
Mitsotakis
, “
On the Galilean invariance of some nonlinear dispersive wave equations
,”
Stud. Appl. Math.
131
(
4
),
359
388
(
2013
).
8.
J. M.
Levy-Leblond
, “
Galilei group and Galilean invariance
,” in
Group Theory and Its Applications
(
Elsevier
,
1971
), pp.
221
299
.
9.
S. A.
Kitaigordskii
,
V. P.
Krasitskii
, and
M. M.
Zaslavskii
, “
On Phillips’ theory of equilibrium range in the spectra of wind-generated gravity waves
,”
J. Phys. Oceanogr.
5
(
3
),
410
420
(
1975
).
10.
D. H.
Peregrine
, “
Interaction of water waves and currents
,”
Adv. Appl. Mech.
16
(
9
),
117
(
1976
).
11.
G. B.
Whitham
, “
Mass, momentum and energy flux in water waves
,”
J. Fluid Mech.
12
(
1
),
135
147
(
1962
).
12.
C. C.
Mei
,
The Applied Dynamics of Ocean Surface Waves
(
World Scientific
,
1989
), Vol. 1.
13.
D. H.
Peregrine
and
I. G.
Jonsson
, “
Interaction of waves and currents
,” Technical report no. MR 83-6,
Bristol University
,
England
,
1983
.
14.
D. M.
Kouskoulas
and
Y.
Toledo
, “
Effects of dual wavenumber dispersion solutions on a nonlinear monochromatic wave-current field
,”
Coast. Eng.
130
,
26
33
(
2017
).
15.
C.
Hoyos
,
B. S.
Kim
, and
Y.
Oz
, “
Lifshitz hydrodynamics
,”
J. High Energy Phys.
2013
(
11
),
145
.
16.
R. G.
Dean
and
R. A.
Dalrymple
,
Water Wave Mechanics for Engineers and Scientists
(
World Scientific Publishing Company
,
1991
), Vol. 2.
17.
D. M.
Kouskoulas
and
Y.
Toledo
, “
Deep water gravity wave triad resonances on uniform flow
,” arXiv:1909.08501 (
2019
).
18.
P.
Chernyshov
,
T.
Vrecica
,
M.
Streßer
,
R.
Carrasco
, and
Y.
Toledo
, “
Rapid wavelet-based bathymetry inversion method for nearshore x-band radars
,”
Remote Sens. Environ.
240
,
111688
(
2020
).
19.
R.
Soffer
,
T.
Vrecica
,
E.
Kit
, and
Y.
Toledo
, “
Observations, modeling, and inter-comparison of waves from deep to intermediate waters in the East Mediterranean basin
,”
Deep Sea Res., Part II
171
,
104646
(
2020
).
20.
T.
Vrećica
,
R.
Soffer
, and
Y.
Toledo
, “
Infragravity wave generation by wind gusts
,”
Geophys. Res. Lett.
46
(
16
),
9728
9738
, (
2019
).
21.
L. R.
Hole
,
I.
Fer
, and
D.
Peddie
, “
Directional wave measurements using an autonomous vessel
,”
Ocean Dyn.
66
(
9
),
1087
1098
(
2016
).
22.
J.
Thomson
,
J. B.
Girton
,
R.
Jha
, and
A.
Trapani
, “
Measurements of directional wave spectra and wind stress from a wave glider autonomous surface vehicle
,”
J. Atmos. Oceanic Technol.
35
(
2
),
347
363
(
2018
).
23.
A.
Brown
,
J.
Thomson
,
A.
Ellenson
,
F. T.
Rollano
,
H. T.
Özkan-Haller
, and
M. C.
Haller
, “
Kinematics and statistics of breaking waves observed using swift buoys
,”
IEEE J. Oceanic Eng.
44
(
4
),
1011
1023
(
2018
).
24.
P.
Veras Guimarães
,
F.
Ardhuin
,
P.
Sutherland
,
M.
Accensi
,
M.
Hamon
,
Y.
Pérignon
,
J.
Thomson
,
A.
Benetazzo
, and
P.
Ferrant
, “
A surface kinematics buoy (SKIB) for wave-current interaction studies
,”
Ocean Sci.
14
(
6
),
1449
1460
(
2018
).
25.
S. F.
Zippel
,
J.
Thomson
, and
G.
Farquharson
, “
Turbulence from breaking surface waves at a river mouth
,”
J. Phys. Oceanogr.
48
(
2
),
435
453
(
2018
).
26.
G. G.
Stokes
, “
On the theory of oscillatory waves
,” in
Transactions of the Cambridge Philosophical Society
(
Pitt Press
,
1847
), p.
441
.
You do not currently have access to this content.