Analog fluids have been widely used to mimic the convective mixing of carbon dioxide into brine in the study of geological carbon storage. Although these fluid systems had many characteristics of the real system, the viscosity contrast between the resident fluid and the invading front was significantly different and largely overlooked. We used x-ray computed tomography to image convective mixing in a three-dimensional porous medium formed of glass beads and compared two invading fluids that had a viscosity 3.5× and 16× that of the resident fluid. The macroscopic behavior such as the dissolution rate and onset time scaled well with the viscosity contrast. However, with a more viscous invading fluid, fundamentally different plume structures and final mixing state were observed due in large part to greater dispersion.

1.
H.
Emami-Meybodi
,
H.
Hassanzadeh
,
C. P.
Green
, and
J.
Ennis-King
, “
Convective dissolution of CO2 in saline aquifers: Progress in modeling and experiments
,”
Int. J. Greenhouse Gas Control
40
,
238
(
2015
).
2.
S. M.
Benson
and
F. M.
Orr
, “
Carbon dioxide capture and storage
,”
MRS Bull.
33
,
303
305
(
2008
).
3.
H. E.
Huppert
and
J. A.
Neufeld
, “
The fluid mechanics of carbon dioxide sequestration
,”
Annu. Rev. Fluid Mech.
46
,
255
272
(
2014
).
4.
R.
Nazari Moghaddam
,
B.
Rostami
, and
P.
Pourafshary
, “
Scaling analysis of the convective mixing in porous media for geological storage of CO2: An experimental approach
,”
Chem. Eng. Commun.
202
,
815
822
(
2015
).
5.
J. A.
Neufeld
,
M. A.
Hesse
,
A.
Riaz
,
M. A.
Hallworth
,
H. A.
Tchelepi
, and
H. E.
Huppert
, “
Convective dissolution of carbon dioxide in saline aquifers
,”
Geophys. Res. Lett.
37
,
L22404
, (
2010
).
6.
S.
Backhaus
,
K.
Turitsyn
, and
R. E.
Ecke
, “
Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry
,”
Phys. Rev. Lett.
106
,
104501
(
2011
).
7.
A. C.
Slim
,
M. M.
Bandi
,
J. C.
Miller
, and
L.
Mahadevan
, “
Dissolution-driven convection in a Hele-Shaw cell
,”
Phys. Fluids
25
,
024101
(
2013
).
8.
E.
Agartan
,
L.
Trevisan
,
A.
Cihan
,
J.
Birkholzer
,
Q.
Zhou
, and
T.
Illangasekare
, “
Experimental study on effects of geologic heterogeneity in enhancing dissolution trapping of supercritical Co2
,”
Water Resour. Res.
51
,
1635
, (
2015
).
9.
L.
Wang
,
Y.
Nakanishi
,
A.
Hyodo
, and
T.
Suekane
, “
Three-dimensional structure of natural convection in a porous medium: Effect of dispersion on finger structure
,”
Int. J. Greenhouse Gas Control
53
,
274
283
(
2016
).
10.
R.
Liyanage
,
J.
Cen
,
S.
Krevor
,
J. P.
Crawshaw
, and
R.
Pini
, “
Multidimensional observations of dissolution-driven convection in simple porous media using x-ray CT scanning
,”
Transp. Porous Media
126
,
355
378
(
2019
).
11.
T. J.
Kneafsey
and
K.
Pruess
, “
Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection
,”
Transp. Porous Media
82
,
123
139
(
2010
).
12.
S.
Mahmoodpour
,
B.
Rostami
,
M. R.
Soltanian
, and
M. A.
Amooie
, “
Effect of brine composition on the onset of convection during Co2 dissolution in brine
,”
Comput. Geosci.
124
,
1
13
(
2019
).
13.
S.
Mahmoodpour
,
B.
Rostami
,
M. R.
Soltanian
, and
M. A.
Amooie
, “
Convective dissolution of carbon dioxide in deep saline aquifers: Insights from engineering a high-pressure porous visual cell
,”
Phys. Rev. Appl.
12
,
034016
(
2019
).
14.
Y.
Tang
,
Z.
Li
,
R.
Wang
,
M.
Cui
,
X.
Wang
,
Z.
Lun
, and
Y.
Lu
, “
Experimental study on the density-driven carbon dioxide convective diffusion in formation water at reservoir conditions
,”
ACS Omega
4
,
11082
11092
(
2019
).
15.
M.
McBride-Wright
,
G. C.
Maitland
, and
J. P. M.
Trusler
, “
Viscosity and density of aqueous solutions of carbon dioxide at temperatures from (274 to 449) k and at pressures up to 100 MPa
,”
J. Chem. Eng. Data
60
,
171
180
(
2015
).
16.
A. W.
Islam
and
E. S.
Carlson
, “
Viscosity models and effects of dissolved Co2
,”
Energy Fuels
26
,
5330
5336
(
2012
).
17.
P.
Saffman
, “
The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid
,”
Proc. R. Soc. London, Ser. A
245
,
312
329
(
1958
).
18.
G. M.
Homsy
, “
Viscous fingering in porous media
,”
Annu. Rev. Fluid Mech.
19
,
271
311
(
1987
).
19.
F. M.
Orr
and
J.
Taber
, “
Use of carbon dioxide in enhanced oil recovery
,”
Science
224
,
563
569
(
1984
).
20.
B.
Jha
,
L.
Cueto-Felgueroso
, and
R.
Juanes
, “
Fluid mixing from viscous fingering
,”
Phys. Rev. Lett.
106
,
194502
(
2011
).
21.
I.
Bihi
,
M.
Baudoin
,
J. E.
Butler
,
C.
Faille
, and
F.
Zoueshtiagh
, “
Inverse Saffman-Taylor experiments with particles lead to capillarity driven fingering instabilities
,”
Phys. Rev. Lett.
117
,
034501
(
2016
).
22.
F. J.
Hickernell
and
Y. C.
Yortsos
, “
Linear stability of miscible displacement processes in porous media in the absence of dispersion
,”
Stud. Appl. Math.
74
,
93
115
(
1986
).
23.
D.
Loggia
,
N.
Rakotomalala
,
D.
Salin
, and
Y. C.
Yortsos
, “
Evidence of new instability thresholds in miscible displacements in porous media
,”
Europhys. Lett.
32
,
633
638
(
1995
).
24.
D.
Loggia
,
D.
Salin
, and
Y. C.
Yortsos
, “
The effect of dispersion on the stability of non-monotonic mobility profiles in porous media
,”
Phys. Fluids
10
,
747
749
(
1998
).
25.
D.
Loggia
,
N.
Rakotomalala
,
D.
Salin
, and
Y. C.
Yortsos
, “
The effect of mobility gradients on viscous instabilities in miscible flows in porous media
,”
Phys. Fluids
11
,
740
742
(
1999
).
26.
O.
Manickam
and
G.
Homsy
, “
Simulation of viscous fingering in miscible displacements with nonmonotonic viscosity profiles
,”
Phys. Fluids
6
,
95
107
(
1994
).
27.
M.
Mishra
,
P. M. J.
Trevelyan
,
C.
Almarcha
, and
A.
De Wit
, “
Influence of double diffusive effects on miscible viscous fingering
,”
Phys. Rev. Lett.
105
,
204501
(
2010
).
28.
N.
Sabet
,
H.
Hassanzadeh
, and
J.
Abedi
, “
Control of viscous fingering by nanoparticles
,”
Phys. Rev. E
96
,
063114
(
2017
).
29.
B.
Meulenbroek
,
R.
Farajzadeh
, and
H.
Bruining
, “
The effect of interface movement and viscosity variation on the stability of a diffusive interface between aqueous and gaseous Co2
,”
Phys. Fluids
25
,
074103
(
2013
).
30.
O.
Manickam
and
G. M.
Homsy
, “
Fingering instabilities in vertical miscible displacement flows in porous media
,”
J. Fluid Mech.
288
,
75
102
(
1995
).
31.
O.
Manickam
and
G. M.
Homsy
, “
Stability of miscible displacements in porous media with nonmonotonic viscosity profiles
,”
Phys. Fluids A
5
,
1356
1367
(
1993
).
32.
D.
Daniel
and
A.
Riaz
, “
Effect of viscosity contrast on gravitationally unstable diffusive layers in porous media
,”
Phys. Fluids
26
,
116601
(
2014
).
33.
M. C. K.
Kim
, “
Onset of buoyancy-driven convection in a variable viscosity liquid saturated in a porous medium
,”
Chem. Eng. Sci.
113
,
77
87
(
2014
).
34.
N.
Sabet
,
H.
Hassanzadeh
, and
J.
Abedi
, “
A new insight into the stability of variable viscosity diffusive boundary layers in porous media under gravity field
,”
AIChE J.
64
,
1083
1094
(
2018
).
35.
H.
Emami-Meybodi
, “
Stability analysis of dissolution-driven convection in porous media
,”
Phys. Fluids
29
,
014102
(
2017
).
36.
Y. C.
Yortsos
and
M.
Zeybek
, “
Dispersion driven instability in miscible displacement in porous media
,”
Phys. Fluids
31
,
3511
3518
(
1988
).
37.
A. C.
Slim
, “
Solutal-convection regimes in a two-dimensional porous medium
,”
J. Fluid Mech.
741
,
461
491
(
2014
).
38.
L.
Wang
,
Y.
Nakanishi
,
A. D.
Teston
, and
T.
Suekane
, “
Effect of diffusing layer thickness on the density-driven natural convection of miscible fluids in porous media: Modeling of mass transport
,”
J. Fluid Sci. Technol.
13
,
JFST0002
(
2018
).
39.
J. J.
Hidalgo
,
J.
Fe
,
L.
Cueto-Felgueroso
, and
R.
Juanes
, “
Scaling of convective mixing in porous media
,”
Phys. Rev. Lett.
109
,
264503
(
2012
).
40.
J.-H.
Ching
,
P.
Chen
, and
P. A.
Tsai
, “
Convective mixing in homogeneous porous media flow
,”
Phys. Rev. Fluids
2
,
014102
(
2017
).
41.
S.
Mahmoodpour
,
M. A.
Amooie
,
B.
Rostami
, and
F.
Bahrami
, “
Effect of gas impurity on the convective dissolution of Co2 in porous media
,”
Energy
199
,
117397
(
2020
).
42.
B.
Bijeljic
and
M. J.
Blunt
, “
Pore-scale modeling of transverse dispersion in porous media
,”
Water Resour. Res.
43
,
W12S11
, (
2007
).
43.
Y.
Xie
,
C. T.
Simmons
, and
A. D.
Werner
, “
Speed of free convective fingering in porous media
,”
Water Resour. Res.
47
,
W11501
, (
2011
).
44.
Y.
Liang
,
B.
Wen
,
M. A.
Hesse
, and
D.
DiCarlo
, “
Effect of dispersion on solutal convection in porous media
,”
Geophys. Res. Lett.
45
,
9690
9698
, (
2018
).
45.
M.
Boon
,
B.
Bijeljic
, and
S.
Krevor
, “
Observations of the impact of rock heterogeneity on solute spreading and mixing
,”
Water Resour. Res.
53
,
4624
4642
, (
2017
).
46.
M.
Boon
,
B.
Bijeljic
,
B.
Niu
, and
S.
Krevor
, “
Observations of 3-D transverse dispersion and dilution in natural consolidated rock by x-ray tomography
,”
Adv. Water Resour.
96
,
266
281
(
2016
).
You do not currently have access to this content.