This paper presents an integral-equation approach to the linear instability problem of two-layer quasi-geostrophic flows around circular islands with radial offshore bottom slope. The flows are composed of concentric uniform potential-vorticity (PV) rings in each layer, with the PV of each ring being opposite in sign. The study extends an earlier similar barotropic model and focuses on the degree to which the topographic waves resonate with the deformation waves at the rings’ peripheries. The integral approach poses the instability problem in a physically elucidating way, whereby the resonating waves in the system are directly identified. Four types of instabilities are identified: instability caused by the resonance of waves at the liquid contours at the edge of each PV ring, instability caused by the resonance of the wave at the upper-layer contour and the topographic waves outside the lower-layer contour, a similar resonance of the lower-layer contour with the topographic waves, and a resonance between one of the eigenmodes of the contour subsystem with the topographic waves. The three latter resonances lead to critical layer instabilities and can be identified as resonances between the contour waves and a collection of singular topographic modes with a critical layer. The PV perturbations in the outer region can be represented asymptotically (far from the origin) as a combination of barotropic and baroclinic modes. Usually, the asymptotically barotropic mode is the mode in resonance with the contours, but, for small growth rates, the asymptotically baroclinic mode may be the dominant mode.

1.
K. P.
Chopra
, “
Atmospheric and oceanic flow problems introduced by islands
,” in
Advances in Geophysics
(
Elsevier
,
1973
), Vol. 16, pp.
297
421
.
2.
V. B.
Shtokman
, “
A qualitative analysis of the causes of the anomalous circulation around oceanic islands
,”
Izv., Atmos. Oceanic Phys.
2
,
723
728
(
1966
).
3.
Z.
Kowalik
and
P.
Stabeno
, “
Trapped motion around the pribilof islands in the bering sea
,”
J. Geophys. Res.: Oceans
104
,
25667
25684
(
1999
).
4.
M. S.
Longuet-Higgins
, “
On the trapping of wave energy round islands
,”
J. Fluid Mech.
29
,
781
821
(
1967
).
5.
M. S.
Longuet-Higgins
, “
On the trapping of long-period waves round islands
,”
J. Fluid Mech.
37
,
773
784
(
1969
).
6.
K. H.
Brink
, “
Island-trapped waves, with application to observations off Bermuda
,”
Dyn. Atmos. Oceans
29
,
93
118
(
1999
).
7.
C.
Wunsch
, “
The spectrum from two years to two minutes of temperature fluctuations in the main thermocline at Bermuda
,” in
Deep Sea Research and Oceanographic Abstracts
(
Elsevier
,
1972
), Vol. 19, pp.
577
593
.
8.
P.
Dyke
, “
Wave trapping and flow around an irregular near circular island in a stratified sea
,”
Ocean Dyn.
55
,
238
247
(
2005
).
9.
H.
Mihanović
,
G. B.
Paklar
, and
M.
Orlić
, “
Resonant excitation of island-trapped waves in a shallow, seasonally stratified sea
,”
Cont. Shelf Res.
77
,
24
37
(
2014
).
10.
M.
Rabinovich
,
Z.
Kizner
, and
G.
Flierl
, “
Bottom-topography effect on the instability of flows around a circular island
,”
J. Fluid Mech.
856
,
202
227
(
2018
).
11.
M.
Rabinovich
,
Z.
Kizner
, and
G.
Flierl
, “
Barotropic annular flows, vortices and waves on a beta cone
,”
J. Fluid Mech.
875
,
225
253
(
2019
).
12.
J.
Pedlosky
, “
The stability of currents in the atmosphere and the ocean: Part I
,”
J. Atmos. Sci.
21
,
201
219
(
1964
).
13.
N. A.
Phillips
, “
A simple three-dimensional model for the study of large-scale extratropical flow patterns
,”
J. Meteorol.
8
,
381
394
(
1951
).
14.
C. R.
Mechoso
, “
Baroclinic instability of flows along sloping boundaries
,”
J. Atmos. Sci.
37
,
1393
1399
(
1980
).
15.
J.
Pedlosky
, “
The instability of continuous heton clouds
,”
J. Atmos. Sci.
42
,
1477
1486
(
1985
).
16.
G. R.
Flierl
, “
On the instability of geostrophic vortices
,”
J. Fluid Mech.
197
,
349
388
(
1988
).
17.
K. R.
Helfrich
and
U.
Send
, “
Finite-amplitude evolution of two-layer geostrophic vortices
,”
J. Fluid Mech.
197
,
331
348
(
1988
).
18.
A.
Solodoch
,
A. L.
Stewart
, and
J. C.
McWilliams
, “
Baroclinic instability of axially symmetric flow over sloping bathymetry
,”
J. Fluid Mech.
799
,
265
296
(
2016
).
19.
V.
Kozlov
, “
Influence of cylindrical topographic disturbances on an unsteady zonal flow of a stratified fluid on the beta plane
,”
Izv., Atmos. Oceanic Phys.
16
,
596
604
(
1980
).
20.
M. A.
Sokolovskiy
,
V. N.
Zyryanov
, and
P. A.
Davies
, “
On the influence of an isolated submerged obstacle on a barotropic tidal flow
,”
Geophys. Astrophys. Fluid Dyn.
88
,
1
30
(
1998
).
21.
M.
Tenreiro
,
L.
Zavala Sansón
, and
G. J. F.
van Heijst
, “
Interaction of dipolar vortices with a step-like topography
,”
Phys. Fluids
18
,
056603
(
2006
).
22.
L. Z.
Sansón
,
A. B.
Aguiar
, and
G.
van Heijst
, “
Horizontal and vertical motions of barotropic vortices over a submarine mountain
,”
J. Fluid Mech.
695
,
173
198
(
2012
).
23.
E. A.
Ryzhov
and
M. A.
Sokolovskiy
, “
Interaction of a two-layer vortex pair with a submerged cylindrical obstacle in a two layer rotating fluid
,”
Phys. Fluids
28
,
056602
(
2016
).
24.
J.
Nycander
and
J. H.
Lacasce
, “
Stable and unstable vortices attached to seamounts
,”
J. Fluid Mech.
507
,
71
94
(
2004
).
25.
B.
Zhao
,
E.
Chieusse-Gérard
, and
G.
Flierl
, “
Influence of bottom topography on vortex stability
,”
J. Phys. Oceanogr.
49
,
3199
3219
(
2019
).
26.
R. A.
Cairns
, “
The role of negative energy waves in some instabilities of parallel flows
,”
J. Fluid Mech.
92
,
1
14
(
1979
).
27.
T.
Satomura
, “
An investigation of shear instability in a shallow water
,”
J. Meteorol. Soc. Jpn. Ser. II
59
,
148
167
(
1981
).
28.
A.
Kubokawa
, “
Instability caused by the coalescence of two modes of a one-layer coastal current with a surface front
,”
J. Oceanogr.
42
,
373
380
(
1986
).
29.
Y.-Y.
Hayashi
and
W. R.
Young
, “
Stable and unstable shear modes of rotating parallel flows in shallow water
,”
J. Fluid Mech.
184
,
477
504
(
1987
).
30.
W. L.
Jones
, “
Propagation of internal gravity waves in fluids with shear flow and rotation
,”
J. Fluid Mech.
30
,
439
448
(
1967
).
31.
S.
Sakai
, “
Rossby-Kelvin instability: A new type of ageostrophic instability caused by a resonance between rossby waves and gravity waves
,”
J. Fluid Mech.
202
,
149
176
(
1989
).
32.
K.
Iga
, “
Instability of a front with a layer of uniform potential vorticity
,”
J. Meteorol. Soc. Jpn. Ser. II
75
,
1
11
(
1997
).
33.
B.
Ribstein
and
V.
Zeitlin
, “
Instabilities of coupled density fronts and their nonlinear evolution in the two-layer rotating shallow-water model: Influence of the lower layer and of the topography
,”
J. Fluid Mech.
716
,
528
565
(
2013
).
34.
N.
Lahaye
and
V.
Zeitlin
, “
Centrifugal, barotropic and baroclinic instabilities of isolated ageostrophic anticyclones in the two-layer rotating shallow water model and their nonlinear saturation
,”
J. Fluid Mech.
762
,
5
34
(
2015
).
35.
L. P. J.
Kamp
, “
Integral-equation approach to the instability of two-dimensional sheared flow of inviscid fluid in a rotating system with variable coriolis parameter
,”
J. Phys. A: Math. Gen.
24
,
2029
(
1991
).
36.
C. C.
Lin
, “
On the stability of two-dimensional parallel flows. I. General theory
,”
Q. Appl. Math.
3
,
117
142
(
1945
).
37.
J. A.
Adam
, “
Critical layer singularities and complex eigenvalues in some differential equations of mathematical physics
,”
Phys. Rep.
142
,
263
356
(
1986
).
38.
K. M.
Case
, “
Stability of inviscid plane Couette flow
,”
Phys. Fluids
3
,
143
148
(
1960
).
39.
R. J.
Briggs
,
J. D.
Daugherty
, and
R. H.
Levy
, “
Role of Landau damping in crossed-field electron beams and inviscid shear flow
,”
Phys. Fluids
13
,
421
432
(
1970
).
40.
F. P.
Bretherton
, “
Critical layer instability in baroclinic flows
,”
Q. J. R. Metereol. Soc.
92
,
325
334
(
1966
).
41.
X.
Riedinger
,
P.
Meunier
, and
S.
Le Dizès
, “
Instability of a vertical columnar vortex in a stratified fluid
,”
Exp. Fluids
49
,
673
681
(
2010
).
42.
X.
Riedinger
and
A. D.
Gilbert
, “
Critical layer and radiative instabilities in shallow-water shear flows
,”
J. Fluid Mech.
751
,
539
569
(
2014
).
43.
K.
Iga
, “
Critical layer instability as a resonance between a non-singular mode and continuous modes
,”
Fluid Dyn. Res.
25
,
63
86
(
1999
).
44.
J.
Pedlosky
,
Geophysical Fluid Dynamics
(
Springer Science & Business Media
,
2013
).
45.
S.
Houry
,
E.
Dombrowsky
,
P.
De Mey
, and
J.-F.
Minster
, “
Brunt-Väisälä frequency and Rossby Radii in the South Atlantic
,”
J. Phys. Oceanogr.
17
,
1619
1626
(
1987
).
46.
Z.
Minster
,
V.
Makarov
,
L.
Kamp
, and
G.
van Heijst
, “
Instabilities of the flow around a cylinder and emission of vortex dipoles
,”
J. Fluid Mech.
730
,
419
441
(
2013
).
47.
C. B.
Moler
and
G. W.
Stewart
, “
An algorithm for generalized matrix eigenvalue problems
,”
SIAM J. Numer. Anal.
10
,
241
256
(
1973
).
48.
F. B.
Hildebrand
,
Introduction to Numerical Analysis
(
Courier Corporation
,
1987
).
49.
E.
Heifetz
,
C.
Bishop
, and
P.
Alpert
, “
Counter-propagating Rossby waves in the barotropic Rayleigh model of shearinstability
,”
Q. J. R. Meteor. Soc.
125
,
2835
2853
(
1999
).
50.
G. K.
Vallis
,
Atmospheric and Oceanic Fluid Dynamics
(
Cambridge University Press
,
2017
).
51.
N. G.
Van Kampen
, “
On the theory of stationary waves in plasmas
,”
Physica
21
,
949
963
(
1955
).
52.
E. T.
Whittaker
and
G. N.
Watson
,
A Course of Modern Analysis
(
Cambridge University Press
,
1996
).
53.
J.
Wimp
, “
On the zeros of a confluent hypergeometric function
,”
Proc. Am. Math. Soc.
16
,
281
283
(
1965
).
54.
J.
Pedlosky
, “
An initial value problem in the theory of baroclinic instability
,”
Tellus
16
,
12
17
(
1964
).
55.
A.
Burger
, “
Instability associated with the continuous spectrum in a baroclinic flow
,”
J. Atmos. Sci.
23
,
272
277
(
1966
).
56.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
(
Courier Corporation
,
1964
).
57.
H.
Bateman
,
Tables of Integral Transforms
(
McGraw-Hill Book Company
,
1954
), Vol. 1.
58.
K.
Iga
, “
A simple criterion for the sign of the pseudomomentum of modes in shallow water systems
,”
J. Fluid Mech.
387
,
343
352
(
1999
).
59.
I. N.
James
, “
Suppression of baroclinic instability in horizontally sheared flows
,”
J. Atmos. Sci.
44
,
3710
3720
(
1987
).
60.
M. K.
Youngs
,
A. F.
Thompson
,
A.
Lazar
, and
K. J.
Richards
, “
ACC meanders, energy transfer, and mixed barotropic–baroclinic instability
,”
J. Phys. Oceanogr.
47
,
1291
1305
(
2017
).
61.
J.
Killingbeck
,
Mathematical Techniques and Physical Applications
(
Elsevier
,
2012
), Vol. 35.
62.
Z.
Kizner
,
B.
Shteinbuch-Fridman
,
V.
Makarov
, and
M.
Rabinovich
, “
Cycloidal meandering of a mesoscale anticyclonic eddy
,”
Phys. Fluids
29
,
086601
(
2017
).
63.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
(
Cambridge University Press
,
1995
).
You do not currently have access to this content.