This article studies the mechanics of the N2–N2 collision process at temperatures up to 2000 K through an extensive set of classical trajectory calculations of binary collisions. It is found that key postcollision characteristics, namely, the deflection angle and the rotational–translational energy exchange rate, are significantly affected by precollision values of the rotational energies of the molecules, which is not addressed in commonly used collision models. On the macroscopic scale, such a behavior will lead to viscosity collision cross section and relaxation rate becoming dependent on both translational and rotational temperatures, as well as on the form of the nonequilibrium rotational energy distribution.

1.
P.
Valentini
and
T. E.
Schwartzentruber
, “
Large-scale molecular dynamics simulations of normal shock waves in dilute argon
,”
Phys. Fluids
21
,
066101
(
2009
).
2.
P.
Valentini
,
P. A.
Tump
,
C.
Zhang
, and
T. E.
Schwartzentruber
, “
Molecular dynamics simulations of shock waves in mixtures of noble gases
,”
J. Thermophys. Heat Transfer
27
,
226
234
(
2013
).
3.
G. A.
Bird
and
J.
Brady
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon Press
,
Oxford
,
1994
), Vol. 5.
4.
J.
Struckmeier
and
K.
Steiner
, “
A comparison of simulation methods for rarefied gas flows
,”
Phys. Fluids
7
,
2876
2885
(
1995
).
5.
E. S.
Oran
,
C. K.
Oh
, and
B. Z.
Cybyk
, “
Direct simulation Monte Carlo: Recent advances and applications
,”
Annu. Rev. Fluid Mech.
30
,
403
441
(
1998
).
6.
J. N.
Moss
and
G. A.
Bird
, “
Direct simulation of transitional flow for hypersonic reentry conditions
,”
J. Spacecr. Rockets
40
,
830
843
(
2003
).
7.
P.
Prasanth
and
J. K.
Kakkassery
, “
Direct simulation Monte Carlo (DSMC): A numerical method for transition-regime flows-A review
,”
J. Indian Inst. Sci.
86
,
169
(
2006
).
8.
C.
Coletti
and
G. D.
Billing
, “
Vibrational energy transfer in molecular oxygen collisions
,”
Chem. Phys. Lett.
356
,
14
22
(
2002
).
9.
E.
Nagnibeda
and
E.
Kustova
,
Kinetic Theory of Transport and Relaxation Processes in Nonequilibrium Reacting Flows
(
Saint-Petersburg University Press
,
Russia
,
2003
).
10.
E.
Nagnibeda
and
E.
Kustova
,
Non-equilibrium Reacting Gas Flows: Kinetic Theory of Transport and Relaxation Processes
(
Springer Science & Business Media
,
2009
).
11.
I. D.
Boyd
and
E.
Josyula
, “
State resolved vibrational relaxation modeling for strongly nonequilibrium flows
,”
Phys. Fluids
23
,
057101
(
2011
).
12.
E. V.
Kustova
, “
On the simplified state-to-state transport coefficients
,”
Chem. Phys.
270
,
177
195
(
2001
).
13.
Z.
Chavis
and
R. G.
Wilmoth
, “
Plume modeling and application to Mars 2001 Odyssey aerobraking
,”
J. Spacecr. Rockets
42
,
450
456
(
2005
).
14.
J.
Zhong
,
T.
Ozawa
, and
D. A.
Levin
, “
Modeling of stardust reentry ablation flows in the near-continuum flight regime
,”
AIAA J.
46
,
2568
2581
(
2008
).
15.
I. D.
Boyd
,
K. A.
Trumble
, and
M. J.
Wright
, “
Modeling of stardust entry at high altitude, part 1: Flowfield analysis
,”
J. Spacecr. Rockets
47
,
708
717
(
2010
).
16.
I. D.
Boyd
and
P.
Jenniskens
, “
Modeling of stardust entry at high altitude, part 2: Radiation analysis
,”
J. Spacecr. Rockets
47
,
901
909
(
2010
).
17.
T. E.
Schwartzentruber
and
I. D.
Boyd
, “
Progress and future prospects for particle-based simulation of hypersonic flow
,”
Prog. Aerosp. Sci.
72
,
66
79
(
2015
).
18.
P. W.
Erdman
,
E. C.
Zipf
,
P.
Espy
,
C. L.
Howlett
,
D. A.
Levin
,
R. J.
Collins
, and
G. V.
Candler
, “
Measurements of ultraviolet radiation from a 5-km/s bow shock
,”
J. Thermophys. Heat Transfer
8
,
441
446
(
1994
).
19.
A. A.
Shevyrin
,
Y. A.
Bondar
,
S. T.
Kalashnikov
,
V. I.
Khlybov
 et al., “
Direct simulation of rarefied high-enthalpy flow around the RAM C-II capsule
,”
High Temp.
54
,
383
389
(
2016
).
20.
J. N.
Moss
and
G. A.
Bird
, “
Direct simulation Monte Carlo simulations of hypersonic flows with shock interactions
,”
AIAA J.
43
,
2565
2573
(
2005
).
21.
C. H.
Kruger
and
W.
Vincenti
,
Introduction to Physical Gas Dynamics
(
John Wiley & Sons
,
1965
).
22.
R. C.
Millikan
and
D. R.
White
, “
Systematics of vibrational relaxation
,”
J. Chem. Phys.
39
,
3209
3213
(
1963
).
23.
P.
Valentini
,
C.
Zhang
, and
T. E.
Schwartzentruber
, “
Molecular dynamics simulation of rotational relaxation in nitrogen: Implications for rotational collision number models
,”
Phys. Fluids
24
,
106101
(
2012
).
24.
P.
Norman
,
P.
Valentini
, and
T.
Schwartzentruber
, “
GPU-accelerated classical trajectory calculation direct simulation Monte Carlo applied to shock waves
,”
J. Comput. Phys.
247
,
153
167
(
2013
).
25.
M.
Panesi
,
R. L.
Jaffe
,
D. W.
Schwenke
, and
T. E.
Magin
, “
Rovibrational internal energy transfer and dissociation of N2(1Σg+) − N(4Su) system in hypersonic flows
,”
J. Chem. Phys.
138
,
044312
(
2013
).
26.
M.
Panesi
,
A.
Munafò
,
T.
Magin
, and
R.
Jaffe
, “
Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method
,”
Phys. Rev. E
90
,
013009
(
2014
).
27.
A.
Broc
,
S.
De Benedictis
,
G.
Dilecce
,
M.
Vigliotti
,
R. G.
Sharafutdinov
, and
P. A.
Skovorodko
, “
Experimental and numerical investigation of an O2/NO supersonic free jet expansion
,”
J. Fluid Mech.
500
,
211
237
(
2004
).
28.
A.
Naß
and
E.
Steffens
, “
Direct simulation of low-pressure supersonic gas expansions and its experimental verification
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
598
,
653
666
(
2009
).
29.
H.
Laribou
,
C.
Fressengeas
,
D.
Entemeyer
,
V.
Jeanclaude
,
R.
Pesci
, and
A.
Tazibt
, “
Effects of the impact of a low temperature nitrogen jet on metallic surfaces
,”
Proc. R. Soc. A
468
,
3601
3619
(
2012
).
30.
P.
Skovorodko
,
A.
Ramos
,
G.
Tejeda
,
J.
Fernández
, and
S.
Montero
, “
Experimental and numerical study of supersonic jets of N2, H2, and N2+H2 mixtures
,”
AIP Conf. Proc.
1501
,
1228
1235
(
2012
).
31.
J.
Lengrand
,
V.
Prikhodko
,
P.
Skovorodko
,
I.
Yarygin
, and
V.
Yarygin
, “
Outflow of gas from nozzle with screen into vacuum
,”
AIP Conf. Proc.
1084
,
1158
1163
(
2008
).
32.
C.
Xie
, “
Characteristics of micronozzle gas flows
,”
Phys. Fluids
19
,
037102
(
2007
).
33.
M.
Darbandi
and
E.
Roohi
, “
Study of subsonic–supersonic gas flow through micro/nanoscale nozzles using unstructured DSMC solver
,”
Microfluid. Nanofluid.
10
,
321
335
(
2011
).
34.
F.
La Torre
,
S.
Kenjereš
,
J.-L.
Moerel
, and
C. R.
Kleijn
, “
Hybrid simulations of rarefied supersonic gas flows in micro-nozzles
,”
Comput. Fluids
49
,
312
322
(
2011
).
35.
M. M. J.
Opgenoord
and
P. C.
Caplan
, “
Aerodynamic design of the hyperloop concept
,”
AIAA J.
56
,
4261
4270
(
2018
).
36.
J.
Braun
,
J.
Sousa
, and
C.
Pekardan
, “
Aerodynamic design and analysis of the hyperloop
,”
AIAA J.
55
,
4053
4060
(
2017
).
37.
Y.
Ben-Ami
and
A.
Manela
, “
Nonlinear thermal effects in unsteady shear flows of a rarefied gas
,”
Phys. Rev. E
98
,
033121
(
2018
).
38.
J.-S.
Oh
,
T.
Kang
,
S.
Ham
,
K.-S.
Lee
,
Y.-J.
Jang
,
H.-S.
Ryou
, and
J.
Ryu
, “
Numerical analysis of aerodynamic characteristics of hyperloop system
,”
Energies
12
,
518
(
2019
).
39.
P.
Zhou
,
J.
Zhang
,
T.
Li
, and
W.
Zhang
, “
Numerical study on wave phenomena produced by the super high-speed evacuated tube maglev train
,”
J. Wind Eng. Ind. Aerodyn.
190
,
61
70
(
2019
).
40.
R.
Hruschka
and
D.
Klatt
, “
In-pipe aerodynamic characteristics of a projectile in comparison with free flight for transonic Mach numbers
,”
Shock Waves
29
,
297
306
(
2019
).
41.
K.
van Goeverden
,
D.
Milakis
,
M.
Janic
, and
R.
Konings
, “
Analysis and modelling of performances of the HL (Hyperloop) transport system
,”
Eur. Transp. Res. Rev.
10
,
41
(
2018
).
42.
See https://hyperloop-one.com/ for Hyperloop webpage; accessed 25-11-2019.
43.
J. K.
Haviland
and
M. L.
Lavin
, “
Application of the Monte Carlo method to heat transfer in a rarefied gas
,”
Phys. Fluids
5
,
1399
1405
(
1962
).
44.
G.
Bird
, “
Monte-Carlo simulation in an engineering context
,”
Prog. Astronaut. Aeronaut.
74
,
239
255
(
1981
).
45.
K.
Koura
and
H.
Matsumoto
, “
Variable soft sphere molecular model for inverse-power-law or Lennard-Jones potential
,”
Phys. Fluids A
3
,
2459
2465
(
1991
).
46.
K.
Koura
and
H.
Matsumoto
, “
Variable soft sphere molecular model for air species
,”
Phys. Fluids A
4
,
1083
1085
(
1992
).
47.
H. A.
Hassan
and
D. B.
Hash
, “
A generalized hard-sphere model for Monte Carlo simulation
,”
Phys. Fluids A
5
,
738
744
(
1993
).
48.
J.
Fan
, “
A generalized soft-sphere model for Monte Carlo simulation
,”
Phys. Fluids
14
,
4399
4405
(
2002
).
49.
C.
Borgnakke
and
P. S.
Larsen
, “
Statistical collision model for Monte Carlo simulation of polyatomic gas mixture
,”
J. Comput. Phys.
18
,
405
420
(
1975
).
50.
B. K.
Annis
and
A. P.
Malinauskas
, “
Temperature dependence of rotational collision numbers from thermal transpiration
,”
J. Chem. Phys.
54
,
4763
4768
(
1971
).
51.
R. N.
Healy
and
T. S.
Storvick
, “
Rotational collision number and Eucken factors from thermal transpiration measurements
,”
J. Chem. Phys.
50
,
1419
1427
(
1969
).
52.
E. H.
Carnevale
,
C.
Carey
, and
G.
Larson
, “
Ultrasonic determination of rotational collision numbers and vibrational relaxation times of polyatomic gases at high temperatures
,”
J. Chem. Phys.
47
,
2829
2835
(
1967
).
53.
T. G.
Winter
and
G. L.
Hill
, “
High-temperature ultrasonic measurements of rotational relaxation in hydrogen, deuterium, nitrogen, and oxygen
,”
J. Acoust. Soc. Am.
42
,
848
858
(
1967
).
54.
J. G.
Parker
, “
Rotational and vibrational relaxation in diatomic gases
,”
Phys. Fluids
2
,
449
462
(
1959
).
55.
I. D.
Boyd
, “
Analysis of rotational nonequilibrium in standing shock waves of nitrogen
,”
AIAA J.
28
,
1997
1999
(
1990
).
56.
I. D.
Boyd
, “
Rotational-translational energy transfer in rarefied nonequilibrium flows
,”
Phys. Fluids A
2
,
447
452
(
1990
).
57.
I. D.
Boyd
, “
Relaxation of discrete rotational energy distributions using a Monte Carlo method
,”
Phys. Fluids A
5
,
2278
2286
(
1993
).
58.
I. D.
Boyd
, “
Temperature dependence of rotational relaxation in shock waves of nitrogen
,”
J. Fluid Mech.
246
,
343
360
(
1993
).
59.
J. A.
Lordi
and
R. E.
Mates
, “
Rotational relaxation in nonpolar diatomic gases
,”
Phys. Fluids
13
,
291
308
(
1970
).
60.
C. A.
Brau
and
R. M.
Jonkman
, “
Classical theory of rotational relaxation in diatomic gases
,”
J. Chem. Phys.
52
,
477
484
(
1970
).
61.
C.
Zhang
,
P.
Valentini
, and
T. E.
Schwartzentruber
, “
Nonequilibrium-direction-dependent rotational energy model for use in continuum and stochastic molecular simulation
,”
AIAA J.
52
,
604
617
(
2014
).
62.
K.
Koura
, “
Statistical inelastic cross-section model for the Monte Carlo simulation of molecules with discrete internal energy
,”
Phys. Fluids A
4
,
1782
1788
(
1992
).
63.
K.
Koura
, “
Statistical inelastic cross-section model for the Monte Carlo simulation of molecules with continuous internal energy
,”
Phys. Fluids A
5
,
778
780
(
1993
).
64.
F.
Robben
and
L.
Talbot
, “
Experimental study of the rotational distribution function of nitrogen in a shock wave
,”
Phys. Fluids
9
,
653
662
(
1966
).
65.
R. B.
Smith
, “
Electron-beam investigation of a hypersonic shock wave in nitrogen
,”
Phys. Fluids
15
,
1010
1017
(
1972
).
66.
T.
Tokumasu
and
Y.
Matsumoto
, “
Dynamic molecular collision (DMC) model for rarefied gas flow simulations by the DSMC method
,”
Phys. Fluids
11
,
1907
1920
(
1999
).
67.
J. I.
Steinfeld
,
P.
Ruttenberg
,
G.
Millot
,
G.
Fanjoux
, and
B.
Lavorel
, “
Scaling laws for inelastic collision processes in diatomic molecules
,”
J. Phys. Chem.
95
,
9638
9647
(
1991
).
68.
I. J.
Wysong
and
D. C.
Wadsworth
, “
Assessment of direct simulation Monte Carlo phenomenological rotational relaxation models
,”
Phys. Fluids
10
,
2983
2994
(
1998
).
69.
V.
Kosyanchuk
, “
Results of N2-N2 collisions simulated using Molecular Dynamics for temperature up to 2000 K
,”
Harvard Dataverse, V1
(
2019
).
70.
A.
van der Avoird
,
P. E. S.
Wormer
, and
A. P. J.
Jansen
, “
An improved intermolecular potential for nitrogen
,”
J. Chem. Phys.
84
,
1629
1635
(
1986
).
71.
D.
McQuarrie
and
J.
Simon
,
Physical Chemistry: A Molecular Approach
(
University Science Books
,
Sausalito, CA
,
1997
), Vol. 1.
72.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Elsevier
,
2001
), Vol. 1.
73.
A.
Riganelli
,
F. V.
Prudente
, and
A. J. C.
Varandas
, “
On the rovibrational partition function of molecular hydrogen at high temperatures
,”
J. Phys. Chem. A
105
,
9518
9521
(
2001
).
74.
P.
Valentini
,
P.
Norman
,
C.
Zhang
, and
T. E.
Schwartzentruber
, “
Rovibrational coupling in molecular nitrogen at high temperature: An atomic-level study
,”
Phys. Fluids
26
,
056103
(
2014
).
75.
A.
Yakunchikov
, “
Potential energy surface of interaction of two diatomic molecules for air flows simulation
,”
Harvard Dataverse, V3
(
2019
).
76.
M. S. H.
Ling
and
M.
Rigby
, “
Towards an intermolecular potential for nitrogen
,”
Mol. Phys.
51
,
855
882
(
1984
).
77.
T. E.
Schwartzentruber
,
M. S.
Grover
, and
P.
Valentini
, “
Direct molecular simulation of nonequilibrium dilute gases
,”
J. Thermophys. Heat Transfer
32
,
892
903
(
2017
).
78.
V. Y.
Rudyak
and
E. V.
Lezhnev
, “
Stochastic algorithm for simulating gas transport coefficients
,”
J. Comput. Phys.
355
,
95
103
(
2018
).
79.
M. H.
Karimi-Jafari
and
M.
Ashouri
, “
Quantifying the anisotropy of intermolecular potential energy surfaces: A critical assessment of available N2-N2 potentials
,”
Phys. Chem. Chem. Phys.
13
,
9887
9894
(
2011
).
80.
A.
Yakunchikov
,
V.
Kosiantchouk
,
A.
Kroupnov
,
M.
Pogosbekian
,
I.
Bryukhanov
, and
A.
Iuldasheva
, “
Potential energy surface of interaction of two diatomic molecules for air flows simulation at intermediate temperatures
,”
Chem. Phys.
536
,
110850
(
2020
).
81.
E. V.
Kustova
and
G. M.
Kremer
, “
Effect of molecular diameters on state-to-state transport properties: The shear viscosity coefficient
,”
Chem. Phys. Lett.
636
,
84
89
(
2015
).
82.
A.
Yakunchikov
and
V.
Kosyanchuk
, “
Application of event-driven molecular dynamics approach to rarefied gas dynamics problems
,”
Comput. Fluids
170
,
121
127
(
2018
).
83.
A.
Donev
,
A. L.
Garcia
, and
B. J.
Alder
, “
Stochastic event-driven molecular dynamics
,”
J. Comput. Phys.
227
,
2644
2665
(
2008
).
84.
P.
Valentini
and
T. E.
Schwartzentruber
, “
A combined event-driven/time-driven molecular dynamics algorithm for the simulation of shock waves in rarefied gases
,”
J. Comput. Phys.
228
,
8766
8778
(
2009
).
85.
F.
Sharipov
,
L. M. G.
Cumin
, and
D.
Kalempa
, “
Heat flux between parallel plates through a binary gaseous mixture over the whole range of the knudsen number
,”
Physica A
378
,
183
193
(
2007
).
86.
F.
Sharipov
and
V. J.
Benites
, “
Transport coefficients of helium-neon mixtures at low density computed from ab initio potentials
,”
J. Chem. Phys.
147
,
224302
(
2017
).
87.
V. V.
Voevodin
,
A. S.
Antonov
,
D. A.
Nikitenko
,
P. A.
Shvets
,
S. I.
Sobolev
,
I. Y.
Sidorov
,
K. S.
Stefanov
,
V. V.
Voevodin
, and
S. A.
Zhumatiy
, “
Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community
,”
Supercomput. Front. Innovations
6
,
4
11
(
2019
).
You do not currently have access to this content.