Improved delayed detached eddy simulation is performed to investigate aero-optical distortions induced by Mach 0.5 flow over a cylindrical turret with a flat window at a Reynolds number of Re = 5.9 × 105 based on the turret radius. Optical wave-front distortions and associated far-field intensities at elevation angles of 90°, 100°, and 120° are calculated using the geometric ray-tracing method and Fourier optics theory, respectively. The time-averaged properties of the flow fields and the optical distortions are compared with the experimental results, and reasonable agreements are obtained. It is shown that large-scale coherent structures significantly increase the optical distortions and, consequently, degrade the optical performance in terms of the far-field intensity level, while the optical effects of the attached turbulent boundary layers and separation bubbles are trivial and negligible. Very little difference is observed in both instantaneous and statistical optical results calculated with and without defocus and astigmatism components, indicating the adequacy of the removing piston and tilt components for aiding in the design of adaptive optical systems. Both co-flow and blowing jet fluid control methods are introduced with a steady mass flow to alleviate wave-front distortions, and preliminary simulations demonstrate the practicability of these fluid control methods in suppressing the optical distortions. It is shown that both the active control methods are competent to reduce the overall wave-front root-mean-square of the optical path difference.

1.
K. G.
Gilbert
and
L. J.
Otten
,
Aero-Optical Phenomena
(
American Institute of Aeronautics and Astronautics
,
1982
).
2.
K.
Wang
and
M.
Wang
, “
Aero-optics of subsonic turbulent boundary layers
,”
J. Fluid Mech.
696
,
122
151
(
2012
).
3.
H.
Ding
,
S.
Yi
,
Y.
Zhu
, and
L.
He
, “
Experimental investigation on aero-optics of supersonic turbulent boundary layers
,”
Appl. Opt.
56
,
7604
7610
(
2017
).
4.
M.
Visbal
, “
Numerical simulation of aero-optical aberration through a weakly compressible shear layer
,” AIAA Paper No. 2009-4298,
2009
.
5.
E. J.
Fitzgerald
and
E. J.
Jumper
, “
The optical distortion mechanism in a nearly incompressible free shear layer
,”
J. Fluid Mech.
512
,
153
189
(
2004
).
6.
A.
Mani
,
P.
Moin
, and
M.
Wang
, “
Computational study of optical distortions by separated shear layers and turbulent wakes
,”
J. Fluid Mech.
625
,
273
298
(
2009
).
7.
S.
Dong
,
G. E.
Karniadakis
,
A.
Ekmekci
, and
D.
Rockwell
, “
A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake
,”
J. Fluid Mech.
569
,
185
207
(
2006
).
8.
S.
Gordeyev
,
J. A.
Cress
,
A.
Smith
, and
E. J.
Jumper
, “
Aero-optical measurements in a subsonic, turbulent boundary layer with non-adiabatic walls
,”
Phys. Fluids
27
,
045110
(
2015
).
9.
M.
White
,
P.
Morgan
, and
M.
Visbal
, “
High fidelity aero-optical analysis
,” AIAA Paper No. 2010-433,
2010
.
10.
B.
Vukasinovic
,
A.
Glezer
,
S.
Gordeyev
,
E.
Jumper
, and
V.
Kibens
, “
Fluidic control of a turret wake: Aerodynamic and aero-optical effects
,”
AIAA J.
48
,
1686
1699
(
2010
).
11.
S.
Gordeyev
and
E.
Jumper
, “
Fluid dynamics and aero-optics of turrets
,”
Prog. Aerosp. Sci.
46
,
388
400
(
2010
).
12.
M.
Kalensky
,
S.
Gordeyev
, and
E. J.
Jumper
, “
In-flight studies of aero-optical distortions around AAOL-BC
,” AIAA Paper No. 2019-3253,
2019
.
13.
M.
Wang
,
A.
Mani
, and
S.
Gordeyev
, “
Physics and computation of aero-optics
,”
Annu. Rev. Fluid Mech.
44
,
299
321
(
2012
).
14.
E. J.
Jumper
and
S.
Gordeyev
, “
Physics and measurement of aero-optical effects: Past and present
,”
Annu. Rev. Fluid Mech.
49
,
419
441
(
2017
).
15.
J.
Cress
,
S.
Gordeyev
,
E.
Jumper
,
T.
Ng
, and
A.
Cain
, “
Similarities and differences in aero-optical structure over cylindrical and hemispherical turrets with a flat window
,” AIAA Paper No. 2007-326,
2007
.
16.
J. E.
Pond
and
G. W.
Sutton
, “
Aero-optic performance of an aircraft forward-facing optical turret
,”
J. Aircr.
43
,
600
607
(
2006
).
17.
P.
Morgan
and
M.
Visbal
, “
Numerical investigation of flow around a turret
,” AIAA Paper No. 2007-4480,
2007
.
18.
R.
Childs
, “
Prediction and control of turbulent aero-optical distortion using large eddy simulation
,” AIAA Paper No. 1993-2670,
1993
.
19.
E. R.
Mathews
,
K.
Wang
,
M.
Wang
, and
E. J.
Jumper
, “
LES analysis of hemisphere-on-cylinder turret aero-optics
,” AIAA Paper No. 2014-0323,
2014
.
20.
K.
Wang
and
M.
Wang
, “
Computational analysis of aero-optical distortions by flow over a cylindrical turret
,”
AIAA J.
54
,
1461
1471
(
2016
).
21.
P. E.
Morgan
and
M. R.
Visbal
, “
Numerical investigation of flow control for a flat-window cylindrical turret
,”
AIAA J.
54
,
861
879
(
2016
).
22.
X. I. A.
Yang
,
J.
Sadique
,
R.
Mittal
, and
C.
Meneveau
, “
Integral wall model for large eddy simulations of wall-bounded turbulent flows
,”
Phys. Fluids
27
,
025112
(
2015
).
23.
R.
Mokhtarpoor
,
S.
Heinz
, and
M.
Stoellinger
, “
Dynamic unified RANS-LES simulations of high Reynolds number separated flows
,”
Phys. Fluids
28
,
095101
(
2016
).
24.
U.
Piomelli
, “
Wall-layer models for large-eddy simulations
,”
Prog. Aerosp. Sci.
44
,
437
446
(
2008
).
25.
M. S.
Kamel
,
K.
Wang
, and
M.
Wang
, “
Predictions of aero-optical distortions using LES with wall modeling
,” AIAA Paper No. 2016-1462,
2016
.
26.
S.
Gordeyev
,
J.
Cress
,
A.
Smith
, and
E.
Jumper
, “
Improvement in optical environment over turrets with flat window using passive flow control
,” AIAA Paper No. 2010-4492,
2010
.
27.
K.
Wang
,
M.
Wang
,
S.
Gordeyev
, and
E.
Jumper
, “
Computation of aero-optical distortions over a cylindrical turret with passive flow control
,” AIAA Paper No. 2010-4498,
2010
.
28.
P. R.
Spalart
, “
Comments on the feasibility of les for wings, and on a hybrid RANS/LES approach
,” in
Proceedings of First AFOSR International Conference on DNS/LES
(
Greyden Press
,
1997
).
29.
P. R.
Spalart
, “
Detached-eddy simulation
,”
Annu. Rev. Fluid Mech.
41
,
181
202
(
2009
).
30.
P. R.
Spalart
,
S.
Deck
,
M. L.
Shur
,
K. D.
Squires
,
M. K.
Strelets
, and
A.
Travin
, “
A new version of detached-eddy simulation, resistant to ambiguous grid densities
,”
Theor. Comput. Fluid Dyn.
20
,
181
(
2006
).
31.
Z.
Yin
,
K. R.
Reddy
, and
P. A.
Durbin
, “
On the dynamic computation of the model constant in delayed detached eddy simulation
,”
Phys. Fluids
27
,
025105
(
2015
).
32.
S.
Taylor
,
J.
Price
,
C.
Chen
,
J. E.
Pond
, and
G.
Sutton
, “
Aero-optic analysis of anisotropic turbulent boundary layer by direct integration
,”
Proc. SPIE
8877
,
887705
(
2013
).
33.
D.
Johnson
and
W.
Rose
, “
Turbulence measurements in a transonic boundary layer and free-shearflow using laser velocimetry and hot-wire anemometry techniques
,” AIAA Paper No. 76-399,
1976
.
34.
M.
Andino
,
J.
Pinier
,
R.
Schmit
,
C.
Camphouse
,
J.
Myatt
, and
M.
Glauser
, “
Flow control over a cylindrical turret using synthetic jets
,” AIAA Paper No. 2008-736,
2008
.
35.
R.
Woszidlo
,
L.
Taubert
, and
I.
Wygnanski
, “
Manipulating the flow over spherical protuberance in a turbulent boundary layer
,”
AIAA J.
47
,
437
450
(
2009
).
36.
B.
Vukasinovic
,
A.
Glezer
,
S.
Gordeyev
,
E.
Jumper
, and
V.
Kibens
, “
Hybrid control of a turret wake
,”
AIAA J.
49
,
1240
1255
(
2011
).
37.
P.
Morgan
and
M.
Visbal
, “
Large eddy simulation of flow over a flat-window cylindrical turret with passive flow control
,” AIAA Paper No. 2010-916,
2010
.
38.
G.
Zha
and
C. D.
Paxton
, “
Novel flow control method for airfoil performance enhancement using co-flow jet
,”
Prog. Astronaut. Aeronaut.
214
,
293
(
2006
).
39.
H.-Y.
Xu
,
C.-L.
Qiao
, and
Z.-Y.
Ye
, “
Dynamic stall control on the wind turbine airfoil via a co-flow jet
,”
Energies
9
,
429
(
2016
).
40.
CD-adapco User Guide, STAR-CCM, version 13.06,
2018
.
41.
D. C.
Wilcox
 et al,
Turbulence Modeling for CFD
(
DCW Industries La Canada
,
CA
,
1998
), Vol. 2.
42.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
43.
M. L.
Shur
,
P. R.
Spalart
,
M. K.
Strelets
, and
A. K.
Travin
, “
A hybrid RANS-LES approach with delayed-DES and wall-modelled les capabilities
,”
Int. J. Heat Fluid Flow
29
,
1638
1649
(
2008
).
44.
S.
Gordeyev
,
J. A.
Cress
,
E. J.
Jumper
, and
A. B.
Cain
, “
Aero-optical environment around a cylindrical turret with a flat window
,”
AIAA J.
49
,
308
315
(
2011
).
45.
P. R.
Spalart
and
C.
Streett
, “Young-person’s guide to detached-eddy simulation grids,“ NASA Report No. NASA/CR-2001-211032, 2001.
46.
J. H.
Gladstone
and
T. P.
Dale
, “
XIV. Researches on the refraction, dispersion, and sensitiveness of liquids
,”
Philos. Trans. R. Soc. London
153
,
317
343
(
1863
).
47.
M.
Jones
and
E.
Bender
, “
CFD-based computer simulation of optical turbulence through aircraft flowfields and wakes
,” AIAA Paper No. 2001-2798,
2001
.
48.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
(
Elsevier
,
2013
).
You do not currently have access to this content.