We address highly swirling, confined-bluff-body-flow evolving through a burner; particularly, contributions of the swirling motion to a central-recirculation-zone (CRZ) downstream the injector. Previous studies suggest that flame stability reduces in combustors lacking this zone; careful consideration of the CRZ is thus desirable. We use Reynolds-Averaged-Navier–Stokes (RANS) and Large-Eddy-Simulation (LES) to simulate the flow, and the influence of the swirl device was included in defining the inflow conditions for LES simulations. We use mean velocity profiles and turbulence statistics to test results. There is qualitative agreement between computed and reported experimental data, and we document quantitative differences obtained with the RANS models. LES velocity field results are mostly within 3% of the experimental data, better than the latest reported LES data, reinforcing the suitability of our approach. We took advantage of the quality of the LES mesh, which solves 95.6% of the resolved-turbulence-energy, to present the vorticity structures showing the precessing vortex motion on the CRZ boundaries. Anisotropic states of the Reynolds-stress were characterized with the aid of an anisotropy invariant map, a novelty for this type of burner; the turbulence states considerably vary inside the burner, behaving isotropically in the center of the CRZ, whereas axisymmetric turbulence is predominant in the other areas of the CRZ. The results reinforce the importance of applying appropriate turbulence models and inflow conditions for simulations involving confined-bluff-body-flows in order to capture the main flow fields and structures in the CRZ.

1et al..
Abujelala
,
M.
,
Jackson
,
T.
, and
Lilley
,
D.
, “
Swirl flow turbulence modeling
,” in
20th Joint Propulsion Conference
(
American Institute of Aeronautics and Astronautics
,
1984
).
2.
Beér
,
J. M.
and
Chigier
,
N. A.
,
Combustion Aerodynamics
(
Applied Science Publishers Ltd.
,
London
,
1972
).
3.
Benim
,
A. C.
,
Escudier
,
M. P.
,
Nahavandi
,
A.
,
Nickson
,
A. K.
,
Syed
,
K. J.
, and
Joos
,
F.
, “
Experimental and numerical investigation of isothermal flow in an idealized swirl combustor
,”
Int. J. Numer. Methods Heat Fluid Flow
20
(
3
),
348
370
(
2010
).
4.
Benim
,
A. C.
,
Nahavandi
,
A.
, and
Syed
,
K.
, “
URANS and LES analysis of turbulent swirling flows
,”
Prog. Comput. Fluid Dyn.
5
(
8
),
444
454
(
2005
).
5.
Billant
,
P.
,
Chomaz
,
J.
, and
Huerre
,
P.
, “
Experimental study of vortex breakdown in swirling jets
,”
J. Fluid Mech.
376
,
183
219
(
1998
).
6.
Bonello
,
B.
, “
Spray combustion analyses: Comparison of turbulence models
,” M.Sc. thesis,
Coventry University
,
United Kingdom
,
2018
.
7.
Bosch
,
J.
,
Jong
,
S.
,
Hoefnagels
,
D.
, and
Slade
,
D. R.
, “
Aviation biofuels: Strategically important, technically achievable, tough to deliver
,” Grantham Institute Briefing Paper No. 23,
2017
.
8et al..
Cai
,
J.
,
Fu
,
Y.
,
Elkady
,
A.
,
Mongia
,
H.
, and
Jeng
,
S.
, “
Effect of confinement size on swirler cup aerodynamics
,” in
41st Aerospace Sciences Meeting and Exhibit
(
American Institute of Aeronautics and Astronautics
,
2003
).
9.
Cavaliere
,
D. E.
, “
Blow-off in gas turbine combustors
,” Ph.D. thesis,
University of Cambridge
,
2013
.
10.
Cavaliere
,
D. E.
,
Kariuki
,
J.
, and
Mastorakos
,
E.
, “
A comparison of the blow-off behaviour of swirl-stabilized premixed, non-premixed and spray flames
,”
Flow, Turbul. Combust.
91
(
2
),
347
372
(
2013
).
11.
Cheng
,
M.
,
Lou
,
J.
, and
Lim
,
T. T.
, “
Vortex ring with swirl: A numerical study
,”
Phys. Fluids
22
(
9
),
097101
(
2010
).
12.
Chigier
,
N. A.
and
Beér
,
J. M.
, “
The flow region near the nozzle in double concentric jets
,”
J. Basic Eng.
86
(
4
),
797
804
(
1964
).
13.
Choi
,
J.
,
Jung
,
E.
,
Kang
,
S.
, and
Do
,
H.
, “
Modeling swirl decay rate of turbulent flows in annular swirl injectors
,”
AIAA J.
56
(
12
),
4910
4926
(
2018
).
14.
Coats
,
C. M.
, “
Coherent structures in combustion
,”
Prog. Energy Combust. Sci.
22
(
5
),
427
509
(
1996
).
15.
Deardorff
,
J. W.
, “
A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers
,”
J. Fluid Mech.
41
(
2
),
453
480
(
1970
).
16.
Denaro
,
F. M.
, “
What does finite volume-based implicit filtering really resolve in large-eddy simulations?
,”
J. Comput. Phys.
230
(
10
),
3849
3883
(
2011
).
17.
Emory
,
M.
and
Iaccarino
,
G.
, “
Visualizing turbulence anisotropy in the spatial domain with componentality contours
,” in
Center for Turbulence Research Annual Research Briefs
(
Center for Turbulence Research
,
2014
), pp.
123
138
.
18.
Erlebacher
,
G.
,
Hussaini
,
M. Y.
,
Speziale
,
C. G.
, and
Zang
,
T. A.
, “
Toward the large-eddy simulation of compressible turbulent flows
,”
J. Fluid Mech.
238
,
155
185
(
1992
).
19.
Escue
,
A.
and
Cui
,
J.
, “
Comparison of turbulence models in simulating swirling pipe flows
,”
Appl. Math. Modell.
34
(
10
),
2840
2849
(
2010
).
20.
Freitag
,
M.
and
Klein
,
M.
, “
Direct numerical simulation of a recirculating, swirling flow
,”
Flow, Turbul. Combust.
75
(
1
),
51
66
(
2005
).
21.
García-Villalba
,
M.
,
Fröhlich
,
J.
, and
Rodi
,
W.
, “
Identification and analysis of coherent structures in the near field of a turbulent unconfined annular swirling jet using large eddy simulation
,”
Phys. Fluids
18
(
5
),
055103
(
2006
).
22.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
(
7
),
1760
1765
(
1991
).
23.
Gibson
,
M. M.
and
Launder
,
B. E.
, “
Ground effects on pressure fluctuations in the atmospheric boundary layer
,”
J. Fluid Mech.
86
(
3
),
491
511
(
1978
).
24.
Gilchrist
,
R.
and
Naughton
,
J.
, “
An experimental study of swirling jets with different initial swirl profiles
,” in
41st Aerospace Sciences Meeting and Exhibit
(
American Institute of Aeronautics and Astronautics
,
2003
).
25.
Giusti
,
A.
, “
Cambridge swirl spray flame Guide for groups who intend to submit calculations for comparisons
,”
Sixth Workshop on the Turbulent Calculations of Sprays, Santa Cruz de Tenerife, Spain
,
2019
, available at http://www.tcs-workshop.org/; accessed 13 February 2019.
26.
Giusti
,
A.
and
Mastorakos
,
E.
, “
Detailed chemistry LES/CMC simulation of a swirling ethanol spray flame approaching blow-off
,”
Proc. Combust. Inst.
36
(
2
),
2625
2632
(
2017
).
27.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
Internal Flow: Concepts and Applications
(
Cambridge University Press
,
2007
).
28.
Gui
,
N.
,
Fan
,
J.
,
Cen
,
K.
, and
Chen
,
S.
, “
A direct numerical simulation study of coherent oscillation effects of swirling flows
,”
Fuel
89
(
12
),
3926
3933
(
2010
).
29.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
, “
Swirl flows
,” in
Tunbridge Wells
(
Abacus Press
,
Kent, England
,
1984
), p.
488
.
30.
Henkes
,
R. A. W. M.
,
Van Der Vlugt
,
F. F.
, and
Hoogendoorn
,
C. J.
, “
Natural-convection flow in a square cavity calculated with low-Reynolds-number turbulence models
,”
Int. J. Heat Mass Transfer
34
(
2
),
377
388
(
1991
).
31.
Hsiao
,
G.
and
Mongia
,
H.
, “
Swirl cup modeling Part 3: Grid independent solution with different turbulence models
,” in
41st Aerospace Sciences Meeting and Exhibit
(
American Institute of Aeronautics and Astronautics
,
2003a
).
32.
Swirl cup modeling Part 2: Inlet conditions
,” in
41st Aerospace Sciences Meeting and Exhibit
, edited by
Hsiao
,
G.
and
Mongia
,
H.
(
American Institute of Aeronautics and Astronautics
,
2003b
).
33.
IATA
, Sustainable Alternative Fuel-Advocacy,
2015
, available at https://www.iata.org/whatwedo/environment/Documents/safa-1st-edition-2015.pdf; accessed 5 March 2019.
34.
ICAO
, Sustainable Aviation Fuels Guide,
2017
, available at https://www.icao.int/environmental-protection/knowledge-sharing/Docs/Sustainable%20Aviation%20Fuels%20Guide_vf.pdf; accessed 13 February 2019.
35.
Jalalatian
,
N.
,
Tabejamaat
,
S.
,
Kashir
,
B.
, and
EidiAttarZadeh
,
M.
, “
An experimental study on the effect of swirl number on pollutant formation in propane bluff-body stabilized swirl diffusion flames
,”
Phys. Fluids
31
(
5
),
055105
(
2019
).
36.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
, “
A synthetic-eddy-method for generating inflow conditions for large-eddy simulations
,”
Int. J. Heat Fluid Flow
27
(
4
),
585
593
(
2006
).
37.
Mass and momentum turbulent transport experiments with confined swirling coaxial jets. I
,”
20th Joint Propulsion Conference
, edited by
Johnson
,
B.
and
Roback
,
R.
1983
.
38.
Jones
,
W. P.
and
Launder
,
B. E.
, “
The prediction of laminarization with a two-equation model of turbulence
,”
Int. J. Heat Mass Transfer
15
(
2
),
301
314
(
1972
).
39.
Jones
,
W. P.
and
Wilhelmi
,
J.
, “
Velocity, temperature and composition measurements in a confined swirl driven recirculating flow
,”
Combust. Sci. Technol.
63
(
1-3
),
13
31
(
1989
).
40.
Kadu
,
P. A.
,
Sakai
,
Y.
,
Ito
,
Y.
,
Iwano
,
K.
,
Sugino
,
M.
,
Katagiri
,
T.
, and
Nagata
,
K.
, “
Numerical investigation of passive scalar transport and mixing in a turbulent unconfined coaxial swirling jet
,”
Int. J. Heat Mass Transfer
142
,
118461
(
2019
).
41.
Kevin
,
M.
, “
Large eddy simulation applications in gas turbines
,”
Philos. Trans. R. Soc., A
367
(
1899
),
2827
2838
(
2009
).
42.
Khalil
,
A. E. E.
,
Brooks
,
J. M.
, and
Gupta
,
A. K.
, “
Impact of confinement on flowfield of swirl flow burners
,”
Fuel
184
,
1
9
(
2016
).
43.
Launder
,
B. E.
and
Spalding
,
D. B.
,
Mathematical Models of Turbulence
(
Academic Press
,
1972
).
44.
Lefebvre
,
A. H.
,
Gas Turbine Combustion
, 2nd ed. (
Taylor & Francis
,
London
,
1999
).
45.
Lefebvre
,
A. H.
and
Ballal
,
D. R.
,
Gas Turbine Combustion: Alternative Fuels and Emissions
(
CRC Press
,
2010
).
46.
Liang
,
H.
and
Maxworthy
,
T.
, “
An experimental investigation of swirling jets
,”
J. Fluid Mech.
525
,
115
159
(
2005
).
47.
Lien
,
F. S.
and
Leschziner
,
M. A.
, “
Assessment of turbulence-transport models including non-linear rng eddy-viscosity formulation and second-moment closure for flow over a backward-facing step
,”
Comput. Fluids
23
(
8
),
983
1004
(
1994
).
48.
Lieuwen
,
T. C.
,
Unsteady Combustor Physics
(
Cambridge University Press
,
Cambridge, New York
,
2012
).
49.
Lilly
,
D. K.
, “
The representation of small-scale turbulence in numerical simulation experiments
,” in
Proceedings of IBM Scientific Computing Symposium on Environmental Sciences
, edited by
H. H.
Goldstine
(
Yorktown Heights
,
New York
,
1967
), pp.
195
.
50.
Liu
,
S.
,
Meneveau
,
C.
, and
Katz
,
J.
, “
On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet
,”
J. Fluid Mech.
275
,
83
119
(
1994
).
51.
Lu
,
X.
,
Wang
,
S.
,
Sung
,
H.
,
Hsieh
,
S.
, and
Yang
,
V.
, “
Large-Eddy simulations of turbulent swirling flows injected into a dump chamber
,”
J. Fluid Mech.
527
,
171
195
(
2005
).
52.
Lucca-Negro
,
O.
and
O’Doherty
,
T.
, “
Vortex breakdown: A review
,”
Prog. Energy Combust. Sci.
27
(
4
),
431
481
(
2001
).
53.
Lumley
,
J. L.
, “
Computational modeling of turbulent flows
,” in
Advances in Applied Mechanics
, edited by
C.
Yih
(
Elsevier
,
1979
), pp.
123
176
.
54.
Lumley
,
J. L.
,
Stochastic Tools in Turbulence
(
Courier Corporation
,
2007
).
55.
Lumley
,
J. L.
and
Newman
,
G. R.
, “
The return to isotropy of homogeneous turbulence
,”
J. Fluid Mech.
82
(
1
),
161
178
(
1977
).
56.
Marchione
,
T.
,
Ahmed
,
S. F.
, and
Mastorakos
,
E.
, “
Ignition of turbulent swirling n-heptane spray flames using single and multiple sparks
,”
Combust. Flame
156
(
1
),
166
180
(
2009
).
57.
Mastorakos
,
E.
, “
Forced ignition of turbulent spray flames
,”
Proc. Combust. Inst.
36
(
2
),
2367
2383
(
2017
).
58.
Matheou
,
G.
,
Bonanos
,
A. M.
,
Pantano
,
C.
, and
Dimotakis
,
P. E.
, “
Large-eddy simulation of mixing in a recirculating shear flow
,”
J. Fluid Mech.
646
,
375
414
(
2010
).
59.
Matheou
,
G.
and
Chung
,
D.
, “
Large-eddy simulation of stratified turbulence. Part II: Application of the stretched-vortex model to the atmospheric boundary layer
,”
J. Atmos. Sci.
71
(
12
),
4439
4460
(
2014
).
60.
Merci
,
B.
and
Gutheil
,
E.
, “
Experiments and numerical simulations of turbulent combustion of diluted sprays
,” in
TCS 3: Third International Workshop on Turbulent Spray Combustion
(
Springer Science & Business Media
,
2014
).
61.
Merci
,
B.
,
Roekaerts
,
D.
, and
Sadiki
,
A.
,
Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion
(
Springer
,
2011
).
62.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
, “
A dynamic subgrid-scale model for compressible turbulence and scalar transport
,”
Phys. Fluids A
3
(
11
),
2746
2757
(
1991
).
63.
Mongia
,
H.
,
Al-Roub
,
M.
,
Danis
,
A.
,
Elliott-Lewis
,
D.
,
Johnson
,
A.
,
Vise
,
S.
,
Jeng
,
S.
,
McDonell
,
V.
, and
Samuelsen
,
G.
, “
Swirl cup modeling. Part 1
,” in
37th Joint Propulsion Conference and Exhibit
,
2001
.
64.
Paik
,
J.
and
Sotiropoulos
,
F.
, “
Numerical simulation of strongly swirling turbulent flows through an abrupt expansion
,”
Int. J. Heat Fluid Flow
31
(
3
),
390
400
(
2010
).
65.
Pashtrapanska
,
M.
,
Jovanovi, Ä
,
J.
,
Lienhart
,
H.
, and
Durst
,
F.
, “
Turbulence measurements in a swirling pipe flow
,”
Exp. Fluids
41
(
5
),
813
(
2006
).
66.
Pierce
,
C.
and
Moin
,
P.
, “
Large eddy simulation of a confined coaxial jet with swirl and heat release
,” in
29th AIAA Fluid Dynamics Conference
(
American Institute of Aeronautics and Astronautics
,
1998
).
67.
Pierce
,
C. D.
and
Moin
,
P.
,
Progress-Variable Approach for Large-Eddy Simulation of Turbulent Combustion
(
Stanford University
,
California, USA
,
2001
).
68.
Piomelli
,
U.
,
Moin
,
P.
, and
Ferziger
,
J. H.
, “
Model consistency in large eddy simulation of turbulent channel flows
,”
Phys. Fluids
31
(
7
),
1884
1891
(
1988
).
69.
Pope
,
S. B.
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge
,
2000
).
70.
Pope
,
S. B.
, “
Ten questions concerning the large-eddy simulation of turbulent flows
,”
New J. Phys.
6
,
35
(
2004
).
71.
Proch
,
F.
,
Pettit
,
M. W. A.
,
Ma
,
T.
,
Rieth
,
M.
, and
Kempf
,
A. M.
, “
Investigations on the effect of different subgrid models on the quality of LES results
,” in
Direct and Large-Eddy Simulation IX
(
Springer
,
Cham
,
2015
), pp.
141
147
.
72.
Radenković
,
D. R.
,
Burazer
,
J. M.
, and
Novković
,
Ð. M.
, “
Anisotropy analysis of turbulent swirl flow
,”
FME Trans.
42
(
1
),
19
25
(
2014
).
73.
Rajamanickam
,
K.
and
Basu
,
S.
, “
Insights into the dynamics of spray-swirl interactions
,”
J. Fluid Mech.
810
,
82
126
(
2017
).
74.
Rocklage-Marliani
,
G.
,
Schmidts
,
M.
, and
Vasanta Ram
,
V. I.
, “
Three-dimensional laser-Doppler velocimeter measurements in swirling turbulent pipe flow
,”
Flow, Turbul. Combust.
70
(
1
),
43
67
(
2003
).
75.
Rodi
,
W.
, “
Experience with two-layer models combining the k-epsilon model with a one-equation model near the wall
,” in
29th Aerospace Sciences Meeting
(
American Institute of Aeronautics and Astronautics
,
1991
).
76.
Sagaut
,
P.
,
Large Eddy Simulation for Incompressible Flows: An Introduction
, 3rd ed. (
Springer Berlin
,
2006
).
77.
Sánchez
,
A. L.
,
Urzay
,
J.
, and
Liñán
,
A.
, “
The role of separation of scales in the description of spray combustion
,”
Proc. Combust. Inst.
35
(
2
),
1549
1577
(
2015
).
78.
Santhosh
,
R.
and
Basu
,
S.
, “
Transitions and blowoff of unconfined non-premixed swirling flame
,”
Combust. Flame
164
,
35
52
(
2016
).
79.
Sarkar
,
S.
and
Lakshmanan
,
B.
, “
Application of a Reynolds stress turbulence model to the compressible shear layer
,”
AIAA J.
29
(
5
),
743
749
(
1991
).
80.
Schefer
,
R. W.
,
Namazian
,
M.
, and
Kelly
,
J.
, “
Velocity measurements in a turbulent nonpremixed bluff-body stabilized flame
,”
Combust. Sci. Technol.
56
(
4-6
),
101
138
(
1987
).
81.
Schneider
,
C.
,
Dreizler
,
A.
, and
Janicka
,
J.
, “
Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows
,”
Flow, Turbul. Combust.
74
(
1
),
103
127
(
2005
).
82.
Sheen
,
H. J.
,
Chen
,
W. J.
,
Jeng
,
S. Y.
, and
Huang
,
T. L.
, “
Correlation of swirl number for a radial-type swirl generator
,”
Exp. Therm. Fluid Sci.
12
(
4
),
444
451
(
1996
).
83.
Shih
,
T.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, “
A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows
,”
Comput. Fluids
24
(
3
),
227
238
(
1995
).
84.
Shir
,
C. C.
, “
A preliminary numerical study of atmospheric turbulent flows in the idealized planetary boundary layer
,”
J. Atmos. Sci.
30
(
7
),
1327
1339
(
1973
).
85.
Sidey
,
J. A. M.
,
Giusti
,
A.
,
Benie
,
P.
,
Mastorakos
,
E.
, The swirl flames data repository,
2017
, available at http://swirl-flame.eng.cam.ac.uk; accessed 25 March 2018.
86.
Siemens
, Star-CCM+ v12.04,
2018
, available at https://mdx.plm.automation.siemens.com/star-ccm-plus; accessed 8 June 2017.
87.
Simonsen
,
A. J.
and
Krogstad
,
P.
, “
Turbulent stress invariant analysis: Clarification of existing terminology
,”
Phys. Fluids
17
(
8
),
088103
(
2005
).
88.
Smagorinsky
,
J.
, “
General circulation experiments with the primitive equations
,”
Mon. Weather Rev.
91
(
3
),
99
164
(
1963
).
89.
Sommerfeld
,
M.
,
Ando
,
A.
, and
Wennerberg
,
D.
, “
Swirling, particle-laden flows through a pipe expansion
,”
J. Fluids Eng.
114
(
4
),
648
656
(
1992
).
90.
Spalart
,
P. R.
and
Rumsey
,
C. L.
, “
Effective inflow conditions for turbulence models in aerodynamic calculations
,”
AIAA J.
45
(
10
),
2544
2553
(
2007
).
91.
Spencer
,
A. J. M.
, “
Theory of invariants
,”
Continuum Phys.
1
,
239
353
(
1971
).
92.
Syred
,
N.
, “
A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems
,”
Prog. Energy Combust. Sci.
32
(
2
),
93
161
(
2006
).
93.
Syred
,
N.
and
Beér
,
J. M.
, “
Combustion in swirling flows: A review
,”
Combust. Flame
23
(
2
),
143
201
(
1974
).
94.
Talamantes
,
G.
and
Maicke
,
B. A.
, “
Evaluation of CFD codes for swirl-driven combustors
,” in
46th AIAA Fluid Dynamics Conference
(
American Institute of Aeronautics and Astronautics
,
2016
).
95.
Tyliszczak
,
A.
,
Cavaliere
,
D. E.
, and
Mastorakos
,
E.
, “
LES/CMC of blow-off in a liquid fueled swirl burner
,”
Flow, Turbul. Combust.
92
(
1
),
237
267
(
2014
).
96.
Voke
,
P. R.
, “
Subgrid-scale modelling at low mesh Reynolds number
,”
Theor. Comput. Fluid Dyn.
8
(
2
),
131
143
(
1996
).
97.
Vreman
,
B.
,
Geurts
,
B.
, and
Kuerten
,
H.
, “
Realizability conditions for the turbulent stress tensor in large-eddy simulation
,”
J. Fluid Mech.
278
,
351
362
(
1994
).
98.
Wang
,
P.
,
Bai
,
X. S.
,
Wessman
,
M.
, and
Klingmann
,
J.
, “
Large eddy simulation and experimental studies of a confined turbulent swirling flow
,”
Phys. Fluids
16
(
9
),
3306
3324
(
2004
).
99.
Wang
,
S.
,
Yang
,
V.
,
Hsiao
,
G.
,
Hsieh
,
S. Y.
, and
Mongia
,
H. C.
, “
Large-eddy simulations of gas-turbine swirl injector flow dynamics
,”
J. Fluid Mech.
583
,
99
122
(
2007
).
100.
Weber
,
R.
,
Visser
,
B. M.
, and
Boysan
,
F.
, “
Assessment of turbulence modeling for engineering prediction of swirling vortices in the near burner zone
,”
Int. J. Heat Fluid Flow
11
(
3
),
225
235
(
1990
).
101.
Wegner
,
B.
,
Maltsev
,
A.
,
Schneider
,
C.
,
Sadiki
,
A.
,
Dreizler
,
A.
, and
Janicka
,
J.
, “
Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments
,”
Int. J. Heat Fluid Flow
25
(
3
),
528
536
(
2004
).
102.
Wolfshtein
,
M.
, “
The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient
,”
Int. J. Heat Mass Transfer
12
(
3
),
301
318
(
1969
).
103.
Xia
,
J. L.
,
Smith
,
B. L.
,
Benim
,
A. C.
,
Schmidli
,
J.
, and
Yadigaroglu
,
G.
, “
Effect of inlet and outlet boundary conditions on swirling flows
,”
Comput. Fluids
26
(
8
),
811
823
(
1997
).
104.
Xu
,
W.
,
Gui
,
N.
,
Ge
,
L.
, and
Yan
,
J.
, “
Direct numerical simulation of twin swirling flow jets: Effect of vortex-vortex interaction on turbulence modification
,”
J. Comput. Eng.
2014
,
1
14
.
105.
Yang
,
X.
,
Gui
,
N.
,
Xie
,
G.
,
Yan
,
J.
,
Tu
,
J.
, and
Jiang
,
S.
, “
Anisotropic characteristics of turbulence dissipation in swirling flow: A direct numerical simulation study
,”
Adv. Math. Phys.
2015
,
1
9
.
106.
Zhang
,
H.
, “
Extinction in turbulent swirling non-premixed flames
,” Ph.D. thesis,
University of Cambridge
,
2015
.
You do not currently have access to this content.