Colloidal or nanoparticle mobility under confinement is of central importance for a wide range of physical and biological processes. Here, we introduce a minimal model of particles in a hydrodynamic continuum to examine how particle shape and concentration affect the transport of particles in spherical confinement. Specifically, an immersed boundary-general geometry Ewald-like approach is adopted to simulate the dynamics of spheres and cylinders under the influence of short- and long-range fluctuating hydrodynamic interactions with appropriate non-slip conditions at the confining walls. An efficient O(N) parallel finite element algorithm is used, thereby allowing simulations at high concentrations, while a Chebyshev polynomial approximation is implemented in order to satisfy the fluctuation–dissipation theorem. A concentration-dependent anomalous diffusion is observed for suspended particles. It is found that introducing cylinders in a background of spheres, i.e., particles with a simple degree of anisotropy, has a pronounced influence on the structure and dynamics of the particles. First, increasing the fraction of cylinders induces a particle segregation effect, where spheres are pushed toward the wall and cylinders remain near the center of the cavity. This segregation leads to a lower mobility for the spheres relative to that encountered in a system of pure spheres at the same volume fraction. Second, the diffusive-to-anomalous transition and the degree of anomaly quantified by the power law exponent in the mean square displacement vs time relation both increase as the fraction of cylinders becomes larger. These findings are of relevance for studies of diffusion in the cytoplasm, where proteins exhibit a distribution of size and shapes that could lead to some of the effects identified in the simulations reported here.

1.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Prentice-Hall
,
Englewood Cliffs, New Jersey
,
1965
).
2.
D. L.
Koch
and
G.
Subramanian
, “
Collective hydrodynamics of swimming microorganisms: Living fluids
,”
Annu. Rev. Fluid Mech.
43
,
637
659
(
2011
).
3.
L. K.
Hudson
,
J.
Eastoe
, and
P. J.
Dowding
, “
Nanotechnology in action: Overbased nanodetergents as lubricant oil additives
,”
Adv. Colloid Interface Sci.
123-126
,
425
431
(
2006
).
4.
R.
Richert
, “
Geometrical confinement and cooperativity in supercooled liquids studied by solvation dynamics
,”
Phys. Rev. B
54
,
15762
(
1996
).
5.
J. D.
Seymour
,
J. P.
Gage
,
S. L.
Codd
, and
R.
Gerlach
, “
Anomalous fluid transport in porous media induced by biofilm growth
,”
Phys. Rev. Lett.
93
,
198103
(
2004
).
6.
J. K.
Dhont
,
An Introduction to Dynamics of Colloids
(
Elsevier
,
1996
).
7.
J.
Gao
,
W.
Guo
,
D.
Feng
,
H.
Wang
,
D.
Zhao
, and
L.
Jiang
, “
High-performance ionic diode membrane for salinity gradient power generation
,”
J. Am. Chem. Soc.
136
,
12265
12272
(
2014
).
8.
Z.
Zhang
,
X.
Sui
,
P.
Li
,
G.
Xie
,
X.-Y.
Kong
,
K.
Xiao
,
L.
Gao
,
L.
Wen
, and
L.
Jiang
, “
Ultrathin and ion-selective janus membranes for high-performance osmotic energy conversion
,”
J. Am. Chem. Soc.
139
,
8905
8914
(
2017
).
9.
S. B.
Darling
, “
Perspective: Interfacial materials at the interface of energy and water
,”
J. Appl. Phys.
124
,
030901
(
2018
).
10.
R. Z.
Waldman
,
H.-C.
Yang
,
D. J.
Mandia
,
P. F.
Nealey
,
J. W.
Elam
, and
S. B.
Darling
, “
Janus membranes via diffusion-controlled atomic layer deposition
,”
Adv. Mater. Interfaces
5
,
1800658
(
2018
).
11.
A. P.
Minton
, “
Excluded volume as a determinant of macromolecular structure and reactivity
,”
Biopolymers
20
,
2093
(
1981
).
12.
A. B.
Fulton
, “
How crowded is the cytoplasm?
,”
Cell
33
,
345
347
(
1982
).
13.
M. C.
Konopka
,
I. A.
Shkel
,
S.
Cayley
,
M. T.
Record
, and
J. C.
Weisshaar
, “
Crowding and confinement effects on protein diffusion in vivo
,”
J. Bacteriol.
188
,
6115
6123
(
2006
).
14.
R. J.
Ellis
, “
Macromolecular crowding: Obvious but underappreciated
,”
Trends Biochem. Sci.
26
,
597
604
(
2001
).
15.
R. J.
Ellis
, “
Macromolecular crowding: An important but neglected aspect of the intracellular environment
,”
Curr. Opin. Struct. Biol.
11
,
114
119
(
2001
).
16.
M.
Grimaldo
,
H.
Lopez
,
C.
Beck
,
F.
Roosen-Runge
,
M.
Moulin
,
J. M.
Devos
,
V.
Laux
,
M.
Härtlein
,
S.
Da Vela
,
R.
Schweins
,
A.
Mariani
,
F.
Zhang
,
J.-L.
Barrat
,
M.
Oettel
,
V. T.
Forsyth
,
T.
Seydel
, and
F.
Schreiber
, “
Protein short-time diffusion in a naturally crowded environment
,”
J. Phys. Chem. Lett.
10
,
1709
1715
(
2019
).
17.
C.
Selhuber-Unkel
,
P.
Yde
,
K.
Berg-Sørensen
, and
L. B.
Oddershede
, “
Variety in intracellular diffusion during the cell cycle
,”
Phys. Biol.
6
,
025015
(
2009
).
18.
M.
Weiss
,
M.
Elsner
,
F.
Kartberg
, and
T.
Nilsson
, “
Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells
,”
Biophys. J.
87
,
3518
3524
(
2004
).
19.
F.
Höfling
and
T.
Franosch
, “
Anomalous transport in the crowded world of biological cells
,”
Rep. Prog. Phys.
76
,
046602
(
2013
).
20.
D. J.
Bicout
and
M. J.
Field
, “
Stochastic dynamics simulations of macromolecular diffusion in a model of the cytoplasm of Escherichia coli
,”
J. Phys. Chem.
100
,
2489
2497
(
1996
).
21.
S. R.
McGuffee
and
A. H.
Elcock
, “
Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm
,”
PLoS Comput. Biol.
6
,
e1000694
(
2010
).
22.
A.
Daddi-Moussa-Ider
,
A.
Guckenberger
, and
S.
Gekle
, “
Particle mobility between two planar elastic membranes: Brownian motion and membrane deformation
,”
Phys. Fluids
28
,
071903
(
2016
).
23.
A. S.
Sangani
,
A.
Acrivos
, and
P.
Peyla
, “
Roles of particle-wall and particle-particle interactions in highly confined suspensions of spherical particles being sheared at low Reynolds numbers
,”
Phys. Fluids
23
,
083302
(
2011
).
24.
T.
Ando
and
J.
Skolnick
, “
Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
18457
18462
(
2010
).
25.
E.
Chow
and
J.
Skolnick
, “
Effects of confinement on models of intracellular macromolecular dynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
14846
14851
(
2015
).
26.
C.
Aponte-Rivera
and
R. N.
Zia
, “
Simulation of hydrodynamically interacting particles confined by a spherical cavity
,”
Phys. Rev. Fluids
1
,
023301
(
2016
).
27.
C.
Aponte-Rivera
,
Y.
Su
, and
R. N.
Zia
, “
Equilibrium structure and diffusion in concentrated hydrodynamically interacting suspensions confined by a spherical cavity
,”
J. Fluid Mech.
836
,
413
(
2018
).
28.
X.
Zhao
,
J.
Li
,
X.
Jiang
,
D.
Karpeev
,
O.
Heinonen
,
B.
Smith
,
J. P.
Hernandez-Ortiz
, and
J. J.
de Pablo
, “
Parallel O(N) Stokes’ solver towards scalable Brownian dynamics of hydrodynamically interacting objects in general geometries
,”
J. Chem. Phys.
146
,
244114
(
2017
).
29.
K. L.
Kounovsky-Shafer
,
J. P.
Hernandez-Ortiz
,
K.
Potamousis
,
G.
Tsvid
,
M.
Place
,
P.
Ravindran
,
K.
Jo
,
S.
Zhou
,
T.
Odijk
,
J. J.
De Pablo
 et al, “
Electrostatic confinement and manipulation of DNA molecules for genome analysis
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
13400
13405
(
2017
).
30.
J.
Li
,
X.
Jiang
,
A.
Singh
,
O. G.
Heinonen
,
J. P.
Hernández-Ortiz
, and
J. J.
de Pablo
, “
Structure and dynamics of hydrodynamically interacting finite-size Brownian particles in a spherical cavity: Spheres and cylinders
,”
J. Chem. Phys.
(in press).
31.
V. K.
Kodali
,
W.
Roos
,
J. P.
Spatz
, and
J. E.
Curtis
, “
Cell-assisted assembly of colloidal crystallites
,”
Soft Matter
3
,
337
348
(
2007
).
32.
P.
Kolhar
and
S.
Mitragotri
, “
Polymer microparticles exhibit size and shape dependent accumulation around the nucleus after endocytosis
,”
Adv. Funct. Mater.
22
,
3759
3764
(
2012
).
33.
S. B.
Savage
and
C. K. K.
Lun
, “
Particle size segregation in inclined chute flow of dry cohesionless granular solids
,”
J. Fluid Mech.
189
,
311
335
(
1988
).
34.
J. M. N. T.
Gray
, “
Particle segregation in dense granular flows
,”
Annu. Rev. Fluid Mech.
50
,
407
433
(
2018
).
35.
V.
Sharma
,
K.
Park
, and
M.
Srinivasarao
, “
Shape separation of gold nanorods using centrifugation
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
4981
4985
(
2009
).
36.
R.
Caulkin
,
X.
Jia
,
M.
Fairweather
, and
R. A.
Williams
, “
Geometric aspects of particle segregation
,”
Phys. Rev. E
81
,
051302
(
2010
).
37.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University Press
,
Cambridge
,
1992
).
38.
O.
Ladyzhenskaya
,
The Mathematical Theory of Viscous Incompressible Flow
(
Gordon and Beach
,
New York
,
1963
).
39.
H.
Power
and
L. C.
Wrobel
,
Boundary Integral Methods in Fluid Mechanics
(
Computational Mechanics Publications
,
Southampton
,
1995
).
40.
J. F.
Brady
and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
(
1988
).
41.
A.
Sierou
and
J. F.
Brady
, “
Accelerated Stokesian dynamics simulations
,”
J. Fluid Mech.
448
,
115
146
(
2001
).
42.
J. W.
Swan
and
J. F.
Brady
, “
Particle motion between parallel walls: Hydrodynamics and simulation
,”
Phys. Fluids
22
,
103301
(
2010
).
43.
M.
Wang
and
J. F.
Brady
, “
Spectral Ewald acceleration of Stokesian dynamics for polydisperse suspensions
,”
J. Comput. Phys.
306
,
443
477
(
2016
).
44.
A. M.
Fiore
,
F.
Balboa Usabiaga
,
A.
Donev
, and
J. W.
Swan
, “
Rapid sampling of stochastic displacements in Brownian dynamics simulations
,”
J. Chem. Phys.
146
,
124116
(
2017
).
45.
A. K.
Townsend
and
H. J.
Wilson
, “
Anomalous effect of turning off long-range mobility interactions in Stokesian dynamics
,”
Phys. Fluids
30
,
077103
(
2018
).
46.
A. M.
Fiore
and
J. W.
Swan
, “
Fast Stokesian dynamics
,”
J. Fluid Mech.
878
,
544
597
(
2019
).
47.
T. A.
Osswald
and
J. P.
Hernández-Ortiz
,
Polymer Processing: Modeling and Simulation
(
Carl Hanser-Verlag
,
Munich
,
2006
).
48.
R.
Cortez
, “
The method of regularized Stokeslets
,”
SIAM J. Sci. Comput.
23
,
1204
(
2001
).
49.
A.
Kumar
and
M. D.
Graham
, “
Accelerated boundary integral method for multiphase flow in non-periodic geometries
,”
J. Comput. Phys.
231
,
6682
6713
(
2012
).
50.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numerica
11
,
479
517
(
2002
).
51.
P. J.
Atzberger
,
P. R.
Kramer
, and
C. S.
Peskin
, “
A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales
,”
J. Comput. Phys.
224
,
1255
1292
(
2007
).
52.
B.
Kallemov
,
A.
Bhalla
,
B.
Griffith
, and
A.
Donev
, “
An immersed boundary method for rigid bodies
,”
Commun. Appl. Math. Comput. Sci.
11
,
79
141
(
2016
).
53.
B.
Sprinkle
,
A.
Donev
,
A. P. S.
Bhalla
, and
N.
Patankar
, “
Brownian dynamics of fully confined suspensions of rigid particles without Green’s functions
,”
J. Chem. Phys.
150
,
164116
(
2019
).
54.
H.
Risken
,
The Fokker-Planck Equation
, 2nd ed. (
Springer-Verlag
,
Berlin, Heidelberg
,
1989
).
55.
H. C.
Öttinger
,
Stochastic Processes in Polymeric Fluids
(
Springer-Verlag
,
Berlin, Heidelberg
,
1996
).
56.
J. P.
Hernández-Ortiz
,
J. J.
de Pablo
, and
M. D.
Graham
, “
Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry
,”
Phys. Rev. Lett.
98
,
140602
(
2007
).
57.
M.
Fixman
, “
Implicit algorithm for Brownian dynamics of polymers
,”
Macromolecules
19
,
1195
1204
(
1986
).
58.
P.
Pranay
,
S. G.
Anekal
,
J. P.
Hernandez-Ortiz
, and
M. D.
Graham
, “
Pair collisions of fluid-filled elastic capsules in shear flow: Effects of membrane properties and polymer additives
,”
Phys. Fluids
22
,
123103
(
2010
).
59.
P. A.
Lebwohl
and
G.
Lasher
, “
Nematic-liquid-crystal order—A Monte Carlo calculation
,”
Phys. Rev. A
6
,
426
(
1972
).
60.
J. A.
Martínez-González
,
X.
Li
,
M.
Sadati
,
Y.
Zhou
,
R.
Zhang
,
P. F.
Nealey
, and
J. J.
de Pablo
, “
Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals
,”
Nat. Commun.
8
,
15854
(
2017
).
61.
M. D.
Carbajal-Tinoco
,
R.
Lopez-Fernandez
, and
J. L.
Arauz-Lara
, “
Asymmetry in colloidal diffusion near a rigid wall
,”
Phys. Rev. Lett.
99
,
138303
(
2007
).
62.
H. B.
Eral
,
J. M.
Oh
,
D.
Van Den Ende
,
F.
Mugele
, and
M. H. G.
Duits
, “
Anisotropic and hindered diffusion of colloidal particles in a closed cylinder
,”
Langmuir
26
,
16722
16729
(
2010
).
63.
A. E.
Cervantes-Martínez
,
A.
Ramírez-Saito
,
R.
Armenta-Calderón
,
M. A.
Ojeda-López
, and
J. L.
Arauz-Lara
, “
Colloidal diffusion inside a spherical cell
,”
Phys. Rev. E
83
,
030402
(
2011
).
64.
G. L.
Hunter
,
K. V.
Edmond
, and
E. R.
Weeks
, “
Boundary mobility controls glassiness in confined colloidal liquids
,”
Phys. Rev. Lett.
112
,
218302
(
2014
).
65.
W.
Wang
and
P.
Huang
, “
Anisotropic mobility of particles near the interface of two immiscible liquids
,”
Phys. Fluids
26
,
092003
(
2014
).
66.
G.
Nägele
, “
On the dynamics and structure of charge-stabilized suspensions
,”
Phys. Rep.
272
,
215
372
(
1996
).
67.
J.
Balbo
,
P.
Mereghetti
,
D.-P.
Herten
, and
R. C.
Wade
, “
The shape of protein crowders is a major determinant of protein diffusion
,”
Biophys. J.
104
,
1576
1584
(
2013
).
68.
E.
Guazzelli
and
J. F.
Morris
,
A Physical Introduction to Suspension Dynamics
(
Cambridge University Press
,
2011
), Vol. 45.
69.
J.
Mewis
and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University Press
,
2012
).
70.
R. I.
Tanner
, “
Review article: Aspects of non-colloidal suspension rheology
,”
Phys. Fluids
30
,
101301
(
2018
).
71.
A.
Singh
,
R.
Mari
,
M. M.
Denn
, and
J. F.
Morris
, “
A constitutive model for simple shear of dense frictional suspensions
,”
J. Rheol.
62
,
457
468
(
2018
).
72.
A.
Singh
,
S.
Pednekar
,
J.
Chun
,
M. M.
Denn
, and
J. F.
Morris
, “
From yielding to shear jamming in a cohesive frictional suspension
,”
Phys. Rev. Lett.
122
,
098004
(
2019
).
73.
V.
Sivadasan
,
E.
Lorenz
,
A. G.
Hoekstra
, and
D.
Bonn
, “
Shear thickening of dense suspensions: The role of friction
,”
Phys. Fluids
31
,
103103
(
2019
).
74.
N. M.
James
,
H.
Xue
,
M.
Goyal
, and
H. M.
Jaeger
, “
Controlling shear jamming in dense suspensions via the particle aspect ratio
,”
Soft Matter
15
,
3649
3654
(
2019
).
You do not currently have access to this content.