Insect wings can passively maintain a high angle of attack during each flapping stroke without the aid of the active pitching motion due to the torsional flexibility of the wing basal region. However, there is no clear understanding of how torsional wing flexibility should be designed for achieving optimal aerodynamic performance. In this work, a computational study was conducted to investigate the passive pitching mechanism of a fruit fly wing in hovering flight using a torsional spring model. The torsional wing stiffness was characterized by the Cauchy number, a ratio between the aerodynamic force and the structural elastic force. Different flapping patterns including zero-deviation, figure-8, and oval-shaped flapping trajectories were evaluated along a horizontal stroke plane. The aerodynamic forces and associated unsteady flow structures were simulated using an in-house immersed-boundary-method based computational fluid dynamics solver. A parametric study on the Cauchy number was performed with a Reynolds number of 300. According to the analysis of the aerodynamic performance, we found that a balance of high lift and high lift-to-power ratio can be achieved in a particular range of Cauchy numbers (0.15–0.30) for all different flapping trajectories. This range is consistent with the Cauchy number calculated based on the experimental measurements of a fruit fly in the literature. In addition, 3D wake structures generated by the passive flapping wings were analyzed in detail. The findings of this work could provide important implications for designing more efficient flapping-wing micro-air vehicles.

1.
H.
Dong
,
A. T.
Bode-Oke
, and
C.
Li
,
Learning from Nature: Unsteady Flow Physics in Bioinspired Flapping Flight
(
InTech
,
2018
).
2.
D. D.
Chin
and
D.
Lentink
, “
Flapping wing aerodynamics: From insects to vertebrates
,”
J. Exp. Biol.
219
,
920
(
2016
).
3.
Z.
Liang
,
H.
Dong
, and
M.
Wei
, “
Computational analysis of hovering hummingbird flight
,” AIAA Paper 2010-555,
2010
.
4.
C.
van den Berg
and
C. P.
Ellington
, “
The vortex wake of a “hovering” model hawkmoth
,”
Philos. Trans. R. Soc. London, Ser. B
352
,
317
(
1997
).
5.
H.
Dong
and
Z.
Liang
, “
Effects of ipsilateral wing-wing interactions on aerodynamic performance of flapping wings
,” AIAA Paper 2010-71,
2010
.
6.
H.
Dong
,
Z.
Liang
, and
M.
Harff
, “
Optimal settings of aerodynamic performance parameters in hovering flight
,”
Int. J. Micro Air Veh.
1
,
173
(
2009
).
7.
C.
Lee
,
Z.
Su
,
H.
Zhong
,
S.
Chen
,
M.
Zhou
, and
J.
Wu
, “
Experimental investigation of freely falling thin disks. Part 2. Transition of three-dimensional motion from zigzag to spiral
,”
J. Fluid Mech.
732
,
77
(
2013
).
8.
A. J.
Bergou
,
S.
Xu
, and
Z. J.
Wang
, “
Passive wing pitch reversal in insect flight
,”
J. Fluid Mech.
591
,
321
(
2007
).
9.
A. R.
Ennos
,“
The inertial cause of wing rotation in Diptera
,”
J. Exp. Biol.
140
,
161
(
1988
), see https://jeb.biologists.org/content/140/1/161.
10.
D.
Ishihara
,
Y.
Yamashita
,
T.
Horie
,
S.
Yoshida
, and
T.
Niho
, “
Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing
,”
J. Exp. Biol.
212
,
3882
(
2009
).
11.
A. J.
Bergou
,
L.
Ristroph
,
J.
Guckenheimer
,
I.
Cohen
, and
Z. J.
Wang
, “
Fruit flies modulate passive wing pitching to generate in-flight turns
,”
Phys. Rev. Lett.
104
,
148101
(
2010
).
12.
J. P.
Whitney
and
R. J.
Wood
, “
Aeromechanics of passive rotation in flapping flight
,”
J. Fluid Mech.
660
,
197
(
2010
).
13.
Q.
Wang
,
J.
Goosen
, and
F.
van Keulen
, “
Optimal pitching axis location of flapping wings for efficient hovering flight
,”
Bioinspiration Biomimetics
12
,
056001
(
2017
).
14.
D.
Ishihara
,
T.
Horie
, and
M.
Denda
, “
A two-dimensional computational study on the fluid-structure interaction cause of wing pitch changes in dipteran flapping flight
,”
J. Exp. Biol.
212
,
1
(
2009
).
15.
C.-k.
Kang
and
W.
Shyy
, “
Scaling law and enhancement of lift generation of an insect-size hovering flexible wing
,”
J. R. Soc., Interface
10
,
20130361
(
2013
).
16.
D.
Ishihara
and
T.
Horie
, “
Passive mechanism of pitch recoil in flapping insect wings
,”
Bioinspiration Biomimetics
12
,
016008
(
2016
).
17.
J.
Hao
,
J.
Wu
, and
Y.
Zhang
, “
Aerodynamic performance of a passive pitching model on bionic flapping wing micro air vehicles
,”
Applied Bionics and Biomechanics
1
,
1
(
2019
).
18.
J.
Wang
,
P.
Han
,
R.
Zhu
,
G.
Liu
,
X.
Deng
, and
H.
Dong
, “
Wake capture and aerodynamics of passively pitching tandem flapping plates
,”
AIAA Paper
2018
3236
(
2018
).
19.
J.
Wang
,
C.
Li
,
R.
Zhu
,
G.
Liu
, and
H.
Dong
, “
Wake structure and aerodynamic performance of passively pitching revolving plates
,” AIAA Paper 2019-1376 1376,
2019
.
20.
S.
Zeyghami
,
Q.
Zhong
,
G.
Liu
, and
H.
Dong
, “
Passive pitching of a flapping wing in turning flight
,”
AIAA J.
57
,
1
(
2018
).
21.
Y.
Chen
,
N.
Gravish
,
A. L.
Desbiens
,
R.
Malka
, and
R. J.
Wood
, “
Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing
,”
J. Fluid Mech.
791
,
1
(
2016
).
22.
C.
Li
,
H.
Dong
, and
K.
Zhao
, “
A balance between aerodynamic and olfactory performance during flight in Drosophila
,”
Nat. Commun.
9
,
3215
(
2018
).
23.
S.
Mao
and
D.
Gang
, “
Lift and power requirements of hovering insect flight
,”
Acta Mech. Sin.
19
,
458
(
2003
).
24.
M.
Sun
and
J. H.
Wu
, “
Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion
,”
J. Exp. Biol.
206
,
3065
(
2003
).
25.
G. J.
Berman
and
Z. J.
Wang
, “
Energy-minimizing kinematics in hovering insect flight
,”
J. Fluid Mech.
582
,
153
(
2007
).
26.
X.
Meng
,
Y.
Liu
, and
M.
Sun
, “
Aerodynamics of ascending flight in fruit flies
,”
J. Bionic. Eng.
14
,
75
(
2017
).
27.
R.
Mittal
,
H.
Dong
,
M.
Bozkurttas
,
F. M.
Najjar
,
A.
Vargas
, and
A.
von Loebbecke
, “
A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
,”
J. Comput. Phys.
227
,
4825
(
2008
).
28.
C.
Li
,
J.
Wang
,
G.
Liu
,
X.
Deng
, and
H.
Dong
, “
Passive pitching mechanism of three-dimensional flapping wings in hovering flight
,” in
Proceedings of the 8th Joint Fluids Engineering Conference on ASME-JSME-KSME 2019, AJKFluids 2019-4639, San Francisco, CA, USA (ASME 2019)
(
ASME
,
2019
).
29.
C.
Li
, “
Effects of wing pitch kinematics on both aerodynamic and olfactory functions in an upwind surge
,”
Proc. Inst. Mech. Eng., Part C
(published online).
30.
C.
Li
,
H.
Dong
, and
K.
Zhao
, “
Dual functions of insect wings in an odor-guided aeronautic navigation
,”
J. Fluids Eng.
142
,
030902
(
2020
).
31.
J.
Wang
,
Y.
Ren
,
C.
Li
, and
H.
Dong
, “
Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight
,”
Bioinspiration Biomimetics
14
,
046010
(
2019
).
32.
C.
Li
,
H.
Dong
, and
Z.
Liang
, “
Proper orthogonal decomposition analysis of 3-D wake structures in a pitching-rolling plate
,” AIAA Paper 2016-2071,
2016
.
33.
C.
Li
,
J.
Wang
, and
H.
Dong
, “
Proper orthogonal decomposition analysis of flapping hovering wings
,” AIAA Paper 2017-0327,
2017
.
34.
C.
Li
,
H.
Dong
, and
B.
Cheng
, “
Tip vortices formation and evolution of rotating wings at low Reynolds numbers
,”
Phys. Fluids
32
,
021905
(
2020
).
35.
C.
Li
and
H.
Dong
, “
Three-dimensional wake topology and propulsive performance of low-aspect-ratio pitching-rolling plates
,”
Phys. Fluids
28
,
071901
(
2016
).
36.
C.
Li
and
H.
Dong
, “
Quantification and analysis of propulsive wake topologies in finite aspect-ratio pitching-rolling plates
,” AIAA Paper 2016-4339,
2016
.
37.
C.
Li
,
H.
Dong
, and
B.
Cheng
, “
Effects of aspect ratio and angle of attack on tip vortex structures and aerodynamic performance for rotating flat plates
,” AIAA Paper 2017-3645 3645,
2017
.
38.
M.
Xu
,
M.
Wei
,
C.
Li
, and
H.
Dong
, “
Adjoint-based optimization for thrust performance of three-dimensional pitching-rolling plate
,”
AIAA J.
57
,
3716
(
2019
).
39.
M.
Xu
,
M.
Wei
,
C.
Li
, and
H.
Dong
, “
Adjoint-based optimization of flapping plates hinged with a trailing-edge flap
,”
Theor. Appl. Mech. Lett.
5
,
1
(
2015
).
40.
J.
Wang
,
C.
Li
,
Y.
Ren
, and
H.
Dong
, “
Effects of surface morphing on the wake structure and performance of flapping plates
,” AIAA Paper 2017-3643 3643,
2017
.
41.
C.
Li
and
H.
Dong
, “
Wake structure and aerodynamic performance of low aspect-ratio revolving plates at low Reynolds number
,” AIAA Paper 2014-1453,
2014
.
42.
C.
Li
,
H.
Dong
, and
Y.
Ren
, “
A numerical study of flapping plates hinged with a trailing-edge flap
,” AIAA Paper 2014-2049,
2014
.
43.
C.
Li
,
H.
Dong
, and
G.
Liu
, “
Effects of a dynamic trailing-edge flap on the aerodynamic performance and flow structures in hovering flight
,”
J. Fluid Struct.
58
,
49
(
2015
).
44.
C.
Li
and
H.
Dong
, “
Wing kinematics measurement and aerodynamics of a dragonfly in turning flight
,”
Bioinspiration Biomimetics
12
,
026001
(
2017
).
45.
C.
Li
,
J.
Jiang
,
H.
Dong
, and
K.
Zhao
, “
Computational modeling and validation of human nasal airflow under various breathing conditions
,”
J. Biomech.
64
,
59
(
2017
).
46.
H.
Wan
,
H.
Dong
, and
K.
Gai
, “
Computational investigation of cicada aerodynamics in forward flight
,”
J. R. Soc., Interface
12
,
20141116
(
2015
).
47.
H.
Aono
,
F.
Liang
, and
H.
Liu
, “
Near- and far-field aerodynamics in insect hovering flight: An integrated computational study
,”
J. Exp. Biol.
211
,
239
(
2008
).
48.
D.
Lentink
and
M. H.
Dickinson
, “
Rotational accelerations stabilize leading edge vortices on revolving fly wings
,”
J. Exp. Biol.
212
,
2705
(
2009
).
49.
M. H.
Dickinson
,
F. O.
Lehmann
, and
S. P.
Sane
, “
Wing rotation and the aerodynamic basis of insect flight
,”
Science
284
,
1954
(
1999
).
50.
S. N.
Fry
,
R.
Sayaman
, and
M. H.
Dickinson
, “
The aerodynamics of hovering flight in Drosophila
,”
J. Exp. Biol.
208
,
2303
(
2005
).
51.
D.
Kolomenskiy
,
S.
Ravi
,
R.
Xu
,
K.
Ueyama
,
T.
Jakobi
,
T.
Engels
,
T.
Nakata
,
J.
Sesterhenn
,
K.
Schneider
, and
R.
Onishi
, “
The dynamics of passive feathering rotation in hovering flight of bumblebees
,”
J. Fluid Struct.
91
,
102628
(
2019
).
52.
H.-N.
Wehmann
,
L.
Heepe
,
S. N.
Gorb
,
T.
Engels
, and
F.-O.
Lehmann
, “
Local deformation and stiffness distribution in fly wings
,”
Biol. Open
8
,
bio038299
(
2019
).
You do not currently have access to this content.