Small scale unmanned aerial vehicles using multirotor propulsion systems have received considerable attention for a wide range of military and commercial applications in recent years. In the multirotor configuration, the rotor interaction phenomenon occurs severely because the rotors are located in close proximity to each other. Therefore, the separation distance between the adjacent rotor tips has a strong effect on the wake structures and flow fields, which consequently play an important role in determining the aerodynamic performance and noise level of the multirotor vehicle. In the present study, numerical simulations of a quadcopter under hover flight conditions are conducted to investigate the mutual rotor-to-rotor interactional effects on the aerodynamic performance, wake structures, and sound pressure level using the nonlinear vortex lattice method with the vortex particle method and acoustic analogy based on Farassat’s formulation 1A. Calculations for the multirotor configurations with different separation distances show that the average thrust force decreases significantly and force fluctuation is found to increase dramatically as the rotor spacing gets smaller. In addition, the wake geometry and induced flow structure behind the rotor tend to be radially dragged down toward the center of the vehicle due to the existence of the adjoining rotor, which consequently results in strong wake-to-wake interaction and the formation of asymmetric wake structures although the multirotor operates under the hovering condition. It is also observed that unsteady loading introduced by rotor interaction leads to a considerable increase in the sound pressure level, particularly the normal direction of the rotor plane.

1.
G.
Cai
,
J.
Dias
, and
L.
Seneviratne
, “
A survey of small-scale unmanned aerial vehicles: Recent advances and future development trends
,”
Unmanned Syst.
02
(
2
),
175
199
(
2014
).
2.
H.
Shakhatreh
,
A. H.
Sawalmeh
,
A.
Al-Fuqaha
,
Z.
Dou
,
E.
Almaita
,
I.
Khalil
,
N. S.
Othman
,
A.
Khreishah
, and
M.
Guizani
, “
Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges
,”
IEEE Access
7
,
48572
48634
(
2019
).
3.
P. B. S.
Lissaman
, “
Low-Reynolds-Number airfoils
,”
Annu. Rev. Fluid Mech.
15
,
223
239
(
1983
).
4.
T. J.
Mueller
and
J. D.
DeLaurier
, “
Aerodynamics of small vehicles
,”
Annu. Rev. Fluid Mech.
35
,
89
111
(
2003
).
5.
L. A.
Young
, “
Conceptual design aspects of three general sub-classes of multi-rotor configurations: Distributed, modular, and heterogeneous
,” in
The 6th AHS Specialists Meeting on Unmanned Rotorcraft Systems
(
The Vertical Flight Society
,
2015
).
6.
D. J.
Pines
and
F.
Bohorquez
, “
Challenges facing future micro-air-vehicle development
,”
J. Aircr.
43
(
2
),
290
305
(
2006
).
7.
A.
Pelletier
and
T. J.
Mueller
, “
Low Reynolds number aerodynamics of low-aspect-ratio, thin/flat/cambered-plate wings
,”
J. Aircr.
37
(
5
),
825
832
(
2000
).
8.
S.
Wang
,
Y.
Zhou
,
M. M.
Alam
, and
H.
Yang
, “
Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers
,”
Phys. Fluids
26
,
115107
(
2014
).
9.
M. M.
O’Meara
and
T. J.
Mueller
, “
Laminar separation bubble characteristics on an airfoil at low Reynolds number
,”
AIAA J.
25
(
8
),
1033
1041
(
1987
).
10.
L. E.
Jones
,
R. D.
Sandberg
, and
N. D.
Sandham
, “
Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence
,”
J. Fluid Mech.
602
,
175
207
(
2008
).
11.
L. E.
Jones
,
R. D.
Sandberg
, and
N. D.
Sandham
, “
Stability and receptivity characteristics of a laminar separation bubble on an aerofoil
,”
J. Fluid Mech.
648
,
257
296
(
2010
).
12.
A.
Crivellini
,
V.
D’Alessandro
,
D.
Di Benedetto
,
S.
Montelpare
, and
R.
Ricci
, “
Study of laminar separation bubble on low Reynolds number operating airfoils: RANS modelling by means of an high-accuracy solver and experimental verification
,”
J. Phys.: Conf. Ser.
501
,
012024
(
2014
).
13.
D.
Lee
,
S.
Kawai
,
T.
Nonomura
,
M.
Anyoji
,
H.
Aono
,
A.
Oyama
,
K.
Asai
, and
K.
Fujii
, “
Mechanisms of surface pressure distribution within a laminar separation bubble at different Reynolds numbers
,”
Phys. Fluids
27
,
023602
(
2015
).
14.
D.
Park
,
H.
Shim
, and
Y.
Lee
, “
PIV measurement of separation bubble on an airfoil at low Reynolds numbers
,”
J. Aerosp. Eng.
33
(
1
),
04019105
(
2020
).
15.
T. J.
Mueller
and
S. M.
Batill
, “
Experimental studies of separation on a two-dimensional airfoil at low Reynolds numbers
,”
AIAA J.
20
(
4
),
457
463
(
1982
).
16.
J. C. M.
Lin
and
L. L.
Pauley
, “
Low-Reynolds-Number separation on an airfoil
,”
AIAA J.
34
(
8
),
1570
1577
(
1996
).
17.
M. S. H.
Boutilier
and
S.
Yarusevych
, “
Separated shear layer transition over an airfoil at a low Reynolds number
,”
Phys. Fluids
24
,
084105
(
2012
).
18.
H.
Dong
,
T.
Xia
,
L.
Chen
,
S.
Liu
,
Y. D.
Cui
,
B. C.
Khoo
, and
A.
Zhao
, “
Study on flow separation and transition of the airfoil in low Reynolds number
,”
Phys. Fluids
31
,
103601
(
2019
).
19.
H.
Shan
,
L.
Jiang
, and
C.
Liu
, “
Direct numerical simulation of flow separation around a NACA 0012 airfoil
,”
Comput. Fluids
34
,
1096
1114
(
2005
).
20.
R.
Kojima
,
T.
Nonomura
,
A.
Oyama
, and
K.
Fujii
, “
Large-eddy simulation of low-Reynolds-number flow over thick and thin NACA airfoils
,”
J. Aircr.
50
(
1
),
187
196
(
2013
).
21.
M.
Anyoji
,
T.
Nonomura
,
H.
Aono
,
A.
Oyama
,
K.
Fujii
,
H.
Nagai
, and
K.
Asai
, “
Computational and experimental analysis of a high-performance airfoil under low-Reynolds-number flow condition
,”
J. Aircr.
51
(
6
),
1864
1872
(
2014
).
22.
G.
Sinibaldi
and
L.
Marino
, “
Experimental analysis on the noise of propellers for small UAV
,”
Appl. Acoust.
74
(
1
),
79
88
(
2013
).
23.
N.
Intaratep
,
W. N.
Alexander
,
W. J.
Devenport
,
S. M.
Grace
, and
A.
Dropkin
, “
Experimental study of quadcopter acoustics and performance at static thrust conditions
,” AIAA Paper 2016-2873,
2016
.
24.
W.
Zhou
,
Z.
Ning
,
H.
Li
, and
H.
Hu
, “
An experimental investigation on rotor-to-rotor interactions of small UAV
,” AIAA Paper 2017-3744,
2017
.
25.
C. E.
Tinney
and
J.
Sirohi
, “
Multirotor drone noise at static thrust
,”
AIAA J.
56
(
7
),
2816
2826
(
2018
).
26.
D.
Shukla
and
N.
Komerath
, “
Multirotor drone aerodynamic interaction investigation
,”
Drones
2
(
4
),
43
(
2018
).
27.
D.
Shukla
and
N.
Komerath
, “
Drone scale coaxial rotor aerodynamic interactions investigation
,”
J. Fluids Eng.
141
(
7
),
071106
(
2019
).
28.
D.
Shukla
and
N.
Komerath
, “
Rotor-duct aerodynamic and acoustic interactions at low Reynolds number
,”
Exp. Fluids
60
,
20
(
2019
).
29.
J. Y.
Hwang
,
M. K.
Jung
, and
O. J.
Kwon
, “
Numerical study of aerodynamic performance of a multirotor unmanned-aerial-vehicle configuration
,”
J. Aircr.
52
(
3
),
839
846
(
2015
).
30.
M.
Misiorowski
,
F.
Gandhi
, and
A. A.
Oberai
, “
Computational study on rotor interactional effects for a quadcopter in edgewise flight
,”
AIAA J.
57
(
12
),
5309
5319
(
2019
).
31.
S.
Yoon
,
H. C.
Lee
, and
T. H.
Pulliam
, “
Computational analysis of multi-rotor flows
,” AIAA Paper 2016-0812,
2016
.
32.
S.
Yoon
,
P. V.
Diaz
,
D. D.
Boyd
, Jr.
,
W. M.
Chan
, and
C. R.
Theodore
, “
Computational aerodynamic modeling of small quadcopter vehicles
,” in
American Helicopter Society (AHS) 73th Annual Forum & Technology Display
(
The Vertical Flight Society
,
2017
).
33.
P. V.
Diaz
and
S.
Yoon
, “
High-fidelity computational aerodynamics of multi-rotor unmanned aerial vehicles
,” AIAA Paper 2018-1266,
2018
.
34.
J.
Lee
,
K.
Yee
, and
S.
Oh
, “
Aerodynamic characteristic analysis of multi-rotors using a modified free-wake method
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
52
(
177
),
168
179
(
2009
).
35.
Z.
Jia
,
S.
Lee
,
K.
Sharma
, and
K. S.
Brentner
, “
Aeroacoustic analysis of a lift-offset coaxial rotor using high-fidelity CFD/CSD loose coupling simulation
,”
J. Am. Helicopter Soc.
65
(
1
),
1
15
(
2020
).
36.
Z.
Jia
and
S.
Lee
, “
Impulsive loading noise of a lift-offset coaxial rotor in high-speed forward flight
,”
AIAA J.
58
(
2
),
687
701
(
2020
).
37.
Z.
Jia
and
S.
Lee
, “
Acoustic analysis of urban air mobility quadrotor aircraft
,” in
Vertical Flight Society (VFS) Aeromechanics for Advanced Vertical Flight Technical Meeting
(
The Vertical Flight Society
,
2020
).
38.
Z.
Jia
and
S.
Lee
, “
Acoustic analysis of a quadrotor eVTOL design via high-fidelity simulations
,” AIAA Paper 2019-2631,
2019
.
39.
J.
Ko
,
J.
Kim
, and
S.
Lee
, “
Computational study of wake interaction and aeroacoustic characteristics in multirotor configurations
,” in
Inter-Noise 2019
(
Inter-Noise
,
2019
).
40.
H.
Jiang
,
T.
Zhou
,
R.
Fattah
,
X.
Zhang
, and
X.
Hung
, “
Multi-rotor noise scattering by a drone fuselage
,” AIAA Paper 2019-2586,
2019
.
41.
S.
Yoon
,
H. C.
Lee
, and
T. H.
Pulliam
, “
Computational study of flow interactions in coaxial rotors
,” in
AHS Technical Meeting on Aeromechanics Design for Vertical Lift
(
The Vertical Flight Society
,
2016
).
42.
J. G.
Leishman
,
M. J.
Bhagwat
, and
A.
Bagai
, “
Free-vortex filament methods for the analysis of helicopter rotor wakes
,”
J. Aircr.
39
(
5
),
759
775
(
2002
).
43.
H.
Yeo
and
W.
Johnson
, “
Assessment of comprehensive analysis calculation of airloads on helicopter rotors
,”
J. Aircr.
42
(
5
),
1218
1228
(
2005
).
44.
K. M.
Kecskemety
and
J. J.
McNamara
, “
Influence of wake effects and inflow turbulence on wind turbine loads
,”
AIAA J.
49
(
11
),
2564
2576
(
2011
).
45.
K.
Boorsma
,
M.
Hartvelt
, and
L. M.
Orsi
, “
Application of the lifting line vortex wake method to dynamic load case simulations
,”
J. Phys.: Conf. Ser.
753
(
2
),
022030
(
2016
).
46.
J.
Katz
and
A.
Plotkin
,
Low-Speed Aerodynamics
(
Cambridge University Press
,
New York, NY, USA
,
2012
), pp.
10013
12473
.
47.
H.
Lee
and
D.-J.
Lee
, “
Numerical investigation of the aerodynamics and wake structures of horizontal axis wind turbines by using nonlinear vortex lattice method
,”
Renew. Energy
132
,
1121
1133
(
2019
).
48.
H.
Lee
and
D.-J.
Lee
, “
Wake impact on aerodynamic characteristics of horizontal axis wind turbine under yawed flow conditions
,”
Renew. Energy
136
,
383
392
(
2019
).
49.
H.
Lee
and
D.-J.
Lee
, “
Effects of platform motions on aerodynamic performance and unsteady wake evolution of a floating offshore wind turbine
,”
Renew. Energy
143
,
9
23
(
2019
).
50.
H.
Lee
and
D. J.
Lee
, “
Low Reynolds number effects on aerodynamic loads of a small scale wind turbine
,”
Renew. Energy
154
,
1283
1293
(
2020
).
51.
T. D.
Economon
,
F.
Palacios
,
S. R.
Copeland
,
T. W.
Lukaczyk
, and
J. J.
Alonso
, “
SU2: An open-source suite for multiphysics simulation and design
,”
AIAA J.
54
(
3
),
828
846
(
2016
).
52.
Y.
Jo
,
T.
Jardin
,
R.
Gojon
,
M. C.
Jacob
, and
J. M.
Moschetta
, “
Prediction of noise from low Reynolds number rotors with different number of blades using a non-linear vortex lattice method
,” AIAA Paper 2019-2615,
2019
.
53.
S. C.
Cakmakcioglu
,
O.
Bas
, and
U.
Kaynak
, “
A correlation-based algebraic transition model
,”
Proc. Inst. Mech. Eng., Part C
232
(
21
),
3915
3929
(
2018
).
54.
D. R.
Clark
and
A. C.
Leiper
, “
The free wake analysis
,”
J. Am. Helicopter Soc.
15
(
1
),
3
11
(
1970
).
55.
K.-H.
Chung
,
C.-J.
Hwang
,
D.-J.
Lee
, and
J.-B.
Yim
, “
Numerical investigation on a rotor tip-vortex instability in very low advance ratio flight
,”
Int. J. Aeronaut. Space Sci.
6
(
2
),
84
96
(
2005
).
56.
D. B.
Bliss
and
W. O.
Miller
, “
Efficient free wake calculations using analytical/numerical matching
,”
Am. Helicopter Soc.
38
,
43
52
(
1993
).
57.
C.
He
and
J.
Zhao
, “
Modeling rotor wake dynamics with viscous vortex particle method
,”
AIAA J.
47
(
4
),
902
915
(
2009
).
58.
J.
Zhao
and
C.
He
, “
A viscous vortex particle model for rotor wake and interference analysis
,”
J. Am. Helicopter Soc.
55
(
1
),
12007
(
2010
).
59.
J. S.
Jang
,
S. H.
Park
, and
D. J.
Lee
, “
Prediction of fuselage surface pressures in rotor–fuselage interactions using an integral solution of Poisson equation
,”
J. Am. Helicopter Soc.
59
(
4
),
1
11
(
2014
).
60.
G. S.
Winckelmans
and
A.
Leonard
, “
Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows
,”
J. Comput. Phys.
109
(
2
),
247
273
(
1993
).
61.
S. Y.
Wie
,
D. K.
Im
,
J. H.
Kwon
,
D. J.
Lee
,
K. H.
Chung
, and
S. B.
Kim
, “
Helicopter rotor noise in the merged tip-vortex and blade interaction condition
,”
Int. J. Aeroacoust.
10
(
4
),
427
442
(
2011
).
62.
K. S.
Brentner
and
F.
Farassat
, “
Modeling Aerodynamically Generated Sound of Helicopter Rotors
,”
Prog. Aerosp. Sci.
39
(
2
),
83
120
(
2003
).
63.
K. S.
Brentner
, “
Prediction of helicopter rotor discrete frequency noise for three scale models
,”
J. Aircr.
25
(
5
),
420
427
(
1988
).
64.
N. S.
Zawodny
,
D. D.
Boyd
, Jr.
, and
C. L.
Burley
, “
Acoustic characterization and prediction of representative, small-scale rotary-wing unmanned aircraft system components
,” in
American Helicopter Society (AHS) 72nd Annual Forum & Technology Display
(
The Vertical Flight Society
,
2016
).
You do not currently have access to this content.