Hydroelastic interaction between water waves and submerged porous elastic disks of negligible thickness in water of finite depth is investigated under the assumption of small amplitude water-wave motion and structural response. The disks are either simply supported or clamped at their edges. Wave power can be absorbed/dissipated by the disks due to their porosity. A theoretical model based on the linear potential flow theory and eigenfunction matching method is developed to solve the wave scattering problem of the submerged disks. An indirect method, employing Kochin functions, is derived based on Green’s theorem to evaluate the wave power absorption/dissipation, and it produces accurate results at a lower computational cost than the conventional method. This theoretical model is applied to perform a multi-parameter study on the performance of a single submerged porous elastic disk, and an array of disks as well, particularly, in terms of near-field wave motion, disk deflection, far-field scattering coefficient, and wave power absorption/dissipation. Deploying multiple disks in an array is found to be a more promising approach for wave power absorption/dissipation compared to enlarging the area of a single disk.

1.
Abramowitz
,
M.
and
Stegun
,
I. A.
,
Handbook of Mathematical Functions
(
Government Printing Office
,
Washington, DC
,
1964
).
2.
Ahmadian
,
A. S.
, “
Introduction
,” in
Numerical Models for Submerged Breakwaters
, edited by
A. S.
Ahmadian
(
Butterworth-Heinemann
,
Boston
,
2016
), Chap. 1, pp.
1
15
.
3.
Behera
,
H.
and
Sahoo
,
T.
, “
Hydroelastic analysis of gravity wave interaction with submerged horizontal flexible porous plate
,”
J. Fluids Struct.
54
,
643
660
(
2015
).
4.
Buriani
,
F.
and
Renzi
,
E.
, “
Hydrodynamics of a flexible piezoelectric wave energy harvester moored on a breakwater
,” in
12th European Wave and Tidal Energy Conference (EWTEC)
(
Cork
,
Ireland
,
2017
).
5.
Cho
,
I. H.
and
Kim
,
M. H.
, “
Interactions of horizontal porous flexible membrane with waves
,”
J. Waterway, Port, Coastal, Ocean Eng.
126
,
245
253
(
2000
).
6.
Cho
,
I. H.
,
Koh
,
H. J.
,
Kim
,
J. R.
, and
Kim
,
M. H.
, “
Wave scattering by dual submerged horizontal porous plates
,”
Ocean Eng.
73
,
149
158
(
2013
).
7.
Chwang
,
A. T.
and
Wu
,
J.
, “
Wave scattering by submerged porous disk
,”
J. Eng. Mech.
120
,
2575
2587
(
1994
).
8.
Evans
,
D. V.
and
Peter
,
M. A.
, “
Asymptotic reflection of linear water waves by submerged horizontal porous plates
,”
J. Eng. Math.
69
,
135
154
(
2011
).
9.
Evans
,
D. V.
and
Porter
,
R.
, “
Hydrodynamic characteristics of an oscillating water column device
,”
Appl. Ocean Res.
17
,
155
164
(
1995
).
10.
Falnes
,
J.
,
Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction
(
Cambridge University Press
,
2002
).
11.
Fang
,
Z.
,
Xiao
,
L.
, and
Peng
,
T.
, “
Generalized analytical solution to wave interaction with submerged multi-layer horizontal porous plate breakwaters
,”
J. Eng. Math.
105
,
117
135
(
2017
).
12.
Farina
,
L.
and
Martin
,
P.
, “
Scattering of water waves by a submerged disc using a hypersingular integral equation
,”
Appl. Ocean Res.
20
,
121
134
(
1998
).
13.
Flavià
,
F. F.
and
Meylan
,
M. H.
, “
An extension of general identities for 3d water wave diffraction with application to the diffraction transfer matrix
,”
Appl. Ocean Res.
84
,
279
290
(
2019
).
14.
Islam
,
N.
,
Kundu
,
S.
, and
Gayen
,
R.
, “
Scattering and radiation of water waves by a submerged rigid disc in a two-layer fluid
,”
Proc. R. Soc. A
475
,
20190331
(
2019
).
15.
Kar
,
P.
,
Koley
,
S.
, and
Sahoo
,
T.
, “
Scattering of surface gravity waves over a pair of trenches
,”
Appl. Math. Modell.
62
,
303
320
(
2018
).
16.
Kar
,
P.
,
Sahoo
,
T.
, and
Behera
,
H.
, “
Effect of Bragg scattering due to bottom undulation on a floating dock
,”
Wave Motion
90
,
121
138
(
2019
).
17.
Koley
,
S.
,
Mondal
,
R.
, and
Sahoo
,
T.
, “
Fredholm integral equation technique for hydroelastic analysis of a floating flexible porous plate
,”
Eur. J. Mech. B: Fluids
67
,
291
305
(
2018
).
18.
Lamas-Pardo
,
M.
,
Iglesias
,
G.
, and
Carral
,
L.
, “
A review of very large floating structures (VLFS) for coastal and offshore uses
,”
Ocean Eng.
109
,
677
690
(
2015
).
19.
Liu
,
Y.
and
Li
,
Y.
, “
An alternative analytical solution for water-wave motion over a submerged horizontal porous plate
,”
J. Eng. Math.
69
,
385
400
(
2011
).
20.
Mahmood-Ul-Hassan
,
H.
,
Meylan
,
M. H.
, and
Peter
,
M. A.
, “
Water-wave scattering by submerged elastic plates
,”
Q. J. Mech. Appl. Math.
62
,
321
344
(
2009
).
21.
Martin
,
P.
and
Farina
,
L.
, “
Radiation of water waves by a heaving submerged horizontal disc
,”
J. Fluid Mech.
337
,
365
379
(
1997
).
22.
Meylan
,
M. H.
, “
Wave response of an ice floe of arbitrary geometry
,”
J. Geophys. Res.
107
,
3005
, (
2002
).
23.
Meylan
,
M. H.
,
Bennetts
,
L. G.
, and
Peter
,
M. A.
, “
Water-wave scattering and energy dissipation by a floating porous elastic plate in three dimensions
,”
Wave Motion
70
,
240
250
(
2017
).
24.
Meylan
,
M. H.
and
Squire
,
V. A.
, “
Response of a circular ice floe to ocean waves
,”
J. Geophys. Res.
101
,
8869
8884
, (
1996
).
25.
Mohapatra
,
S. C.
,
Sahoo
,
T.
, and
Guedes Soares
,
C.
, “
Surface gravity wave interaction with a submerged horizontal flexible porous plate
,”
Appl. Ocean Res.
78
,
61
74
(
2018
).
26.
Porter
,
R.
, “
Linearised water wave problems involving submerged horizontal plates
,”
Appl. Ocean Res.
50
,
91
109
(
2015
).
27.
Porter
,
R.
and
Evans
,
D.
, “
Complementary approximations to wave scattering by vertical barriers
,”
J. Fluid Mech.
294
,
155
180
(
1995
).
28.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
Numerical Recipes: The Art of Scientific Computing
(
Cambridge University Press
,
2007
).
29.
Renzi
,
E.
, “
Hydroelectromechanical modelling of a piezoelectric wave energy converter
,”
Proc. R. Soc. A
472
,
20160715
(
2016
).
30.
Sahoo
,
T.
,
Lee
,
M.
, and
Chwang
,
A.
, “
Trapping and generation of waves by vertical porous structures
,”
J. Eng. Mech.
126
,
1074
1082
(
2000
).
31.
Sahoo
,
T.
,
Yip
,
T. L.
, and
Chwang
,
A. T.
, “
Scattering of surface waves by a semi-infinite floating elastic plate
,”
Phys. Fluids
13
,
3215
(
2001
).
32.
Squire
,
V. A.
, “
Synergies between VLFS hydroelasticity and sea-ice research
,” in
The Eighteenth International Offshore and Polar Engineering Conference
(
International Society of Offshore and Polar Engineers
,
2008
), pp.
1
13
.
33.
Squire
,
V. A.
, “
Ocean wave interactions with sea ice: A reappraisal
,”
Annu. Rev. Fluid Mech.
52
,
37
60
(
2020
).
34.
Thompson
,
I.
,
Linton
,
C.
, and
Porter
,
R.
, “
A new approximation method for scattering by long finite arrays
,”
Q. J. Mech. Appl. Math.
61
,
333
352
(
2008
).
35.
Williams
,
T. D.
and
Meylan
,
M. H.
, “
The Wiener–Hopf and residue calculus solutions for a submerged semi-infinite elastic plate
,”
J. Eng. Math.
75
,
81
106
(
2012
).
36.
Yu
,
X.
and
Chwang
,
A. T.
, “
Analysis of wave scattering by submerged circular disk
,”
J. Eng. Mech.
119
,
1804
1817
(
1993
).
37.
Yu
,
X.
and
Chwang
,
A. T.
, “
Water waves above submerged porous plate
,”
J. Eng. Mech.
120
,
1270
1280
(
1994
).
38.
Zhao
,
C.
,
Zhang
,
J.
, and
Huang
,
W.
, “
Vibration reduction of floating elastic plates in water waves
,”
Marine Struct.
20
,
71
99
(
2007
).
39.
Zheng
,
S.
,
Antonini
,
A.
,
Zhang
,
Y.
,
Greaves
,
D.
,
Miles
,
J.
, and
Iglesias
,
G.
, “
Wave power extraction from multiple oscillating water columns along a straight coast
,”
J. Fluid Mech.
878
,
445
480
(
2019a
).
40.
Zheng
,
S.
,
Meylan
,
M. H.
,
Fan
,
L.
,
Greaves
,
D.
, and
Iglesias
,
G.
, “
Wave scattering by a floating porous elastic plate of arbitrary shape: A semi-analytical study
,”
J. Fluids Struct.
92
,
102827
(
2020
).
41.
Zheng
,
S.
and
Zhang
,
Y.
, “
Wave diffraction from a truncated cylinder in front of a vertical wall
,”
Ocean Eng.
104
,
329
343
(
2015
).
42.
Zheng
,
S.
and
Zhang
,
Y.
, “
Wave radiation from a truncated cylinder in front of a vertical wall
,”
Ocean Eng.
111
,
602
614
(
2016
).
43.
Zheng
,
S.
and
Zhang
,
Y.
, “
Theoretical modelling of a new hybrid wave energy converter in regular waves
,”
Renewable Energy
128
,
125
141
(
2018
).
44.
Zheng
,
S.
,
Zhang
,
Y.
, and
Iglesias
,
G.
, “
Wave-structure interaction in hybrid wave farms
,”
J. Fluids Struct.
83
,
386
412
(
2018
).
45.
Zheng
,
S.
,
Zhang
,
Y.
, and
Iglesias
,
G.
, “
Coast/breakwater-integrated OWC: A theoretical model
,”
Marine Struct.
66
,
121
135
(
2019b
).
You do not currently have access to this content.