Clustering of inertial spheres in a statistically unsteady flow field is believed to be different from particle clustering observed in statistically steady flows. The continuously evolving three-dimensional Taylor–Green vortex (TGV) flow exhibits time-varying length and time scales, which are likely to alter the resonance of a given particle with the evolving flow structures. The tendency of homogeneously introduced spherical point-particles to cluster preferentially in the TGV flow is observed to depend on the particle inertia, parameterized in terms of the particle response time τp. The degree of the inhomogeneity of the particle distribution is measured by the variance σ2 of Voronoï volumes. The time evolution of the particle-laden TGV flow is characterized by a viscous dissipation time scale τd and the effective Stokes number Steff = τp/τd. Particles with low/little inertia do not cluster in the early stage when the TGV flow only consists of large-scale and almost inviscid structures and Steff < 1. Later, when the large structures have been broken down into smaller vortices, the least inertial particles exhibit a stronger preferential concentration than the more inertial spheres. At this stage, when the viscous energy dissipation has reached its maximum level, the effective Stokes number of these particles has reached the order of one. Particles are generally seen to cluster preferentially at strain-rate dominated locations, i.e., where the second invariant Q of the velocity gradient tensor is negative. However, a memory effect can be observed in the course of the flow evolution where high σ2 values do not always correlate with Q < 0.

1.
G. I.
Taylor
and
A. E.
Green
, “
Mechanism of the production of small eddies from large ones
,”
Proc. R. Soc. London, Ser. A
158
,
499
521
(
1937
).
2.
J. R.
DeBonis
, “
Solutions of the Taylor–Green vortex problem using high-resolution explicit finite difference methods
,” in
AIAA 51st Aerospace Sciences Meeting, Grapevine, Texas
, AIAA-paper 0382 (
2013
).
3.
M. E.
Brachet
,
D. I.
Meiron
,
S. A.
Orszag
,
B. G.
Nickel
,
R. H.
Morf
, and
U.
Frisch
, “
Small-scale structure of the Taylor–Green vortex
,”
J. Fluid Mech.
130
,
411
452
(
1983
).
4.
M. E.
Brachet
, “
Direct simulation of three-dimensional turbulence in the Taylor–Green vortex
,”
Fluid Dyn. Res.
8
,
1
4
(
1991
).
5.
N.
Sharma
and
T. K.
Sengupta
, “
Vorticity dynamics of the three-dimensional Taylor–Green vortex problem
,”
Phys. Fluids
31
,
035106
(
2019
).
6.
T.
Dairay
,
E.
Lamballais
,
S.
Laizet
, and
J. C.
Vassilicos
, “
Numerical dissipation vs subgrid-scale modelling for large eddy simulation
,”
J. Comput. Phys.
337
,
252
274
(
2017
).
7.
K. D.
Squires
and
J. K.
Eaton
, “
Preferential concentration of particles by turbulence
,”
Phys. Fluids A
3
,
1169
1178
(
1991
).
8.
E.
Calzavarini
,
M.
Kerscher
,
D.
Lohse
, and
F.
Toschi
, “
Dimensionality and morphology of particle and bubble clusters in turbulent flow
,”
J. Fluid Mech.
607
,
13
24
(
2008
).
9.
C.
Marchioli
and
A.
Soldati
, “
Mechanisms for particle transfer and segregation in a turbulent boundary layer
,”
J. Fluid Mech.
468
,
283
315
(
2002
).
10.
C.
Nilsen
,
H. I.
Andersson
, and
L.
Zhao
, “
A Voronoi analysis of preferential concentration in a vertical channel flow
,”
Phys. Fluids
25
,
115108
(
2013
).
11.
W.
Yuan
,
L.
Zhao
,
H. I.
Andersson
, and
J.
Deng
, “
Three-dimensional Voronoï analysis of preferential concentration of spheroidal particles in wall turbulence
,”
Phys. Fluids
30
,
063304
(
2018
).
12.
L.
Zhao
,
N. R.
Challabotla
,
H. I.
Andersson
, and
E. A.
Variano
, “
Mapping spheroids rotation modes in turbulent channel flow: Effects of shear, turbulence and particle inertia
,”
J. Fluid Mech.
876
,
19
54
(
2019
).
13.
M. R.
Maxey
, “
The motion of small spherical particles in a cellular flow field
,”
Phys. Fluids
30
,
1915
1928
(
1987
).
14.
L. P.
Wang
,
M. R.
Maxey
,
T. D.
Burton
, and
D. E.
Stock
, “
Chaotic dynamics of particle dispersion in fluids
,”
Phys. Fluids A
4
,
1789
1804
(
1992
).
15.
W. M.
Durham
,
E.
Climent
, and
R.
Stocker
, “
Gyrotaxis in a steady vortical flow
,”
Phys. Rev. Lett.
106
,
238102
(
2011
).
16.
Y.
Yao
and
J.
Capecelatro
, “
Competition between drag and Coulomb interactions in turbulent particle-laden flows using a coupled-fluid-Ewald-simulation based approach
,”
Phys. Rev. Fluids
3
,
034301
(
2018
).
17.
X.
Ruan
,
S.
Chen
, and
S.
Li
, “
Structural evolution and breakage of dense agglomerates in shear flow and Taylor–Green vortex
,”
Chem. Eng. Sci.
211
,
115261
(
2020
).
18.
L.
Bergougnoux
,
G.
Bouchet
,
D.
Lopez
, and
É.
Guazzelli
, “
The motion of solid spherical particles falling in a cellular flow field at low Stokes number
,”
Phys. Fluids
26
,
093302
(
2014
).
19.
H.
Stommel
, “
Trajectories of small bodies sinking slowly through convection cells
,”
J. Mar. Res.
8
,
24
29
(
1949
).
20.
S. A.
Thorpe
, “
Langmuir circulation
,”
Annu. Rev. Fluid Mech.
36
,
55
79
(
2004
).
21.
W. M.
Durham
and
R.
Stocker
, “
Thin phytoplankton layers: Characteristics, mechanisms, and consequences
,”
Annu. Rev. Mar. Sci.
4
,
177
207
(
2012
).
22.
J. S.
Guasto
,
R.
Rusconi
, and
R.
Stocker
, “
Fluid mechanics of planktonic microorganisms
,”
Annu. Rev. Fluid Mech.
44
,
373
400
(
2012
).
23.
V.
Hidalgo-Ruz
,
L.
Gutow
,
R. C.
Thompson
, and
M.
Thiel
, “
Microplastics in the marine environment: A review of the methods used for the identification and quantification
,”
Environ. Sci. Technol.
46
,
3060
3075
(
2012
).
24.
L. G. A.
Barboza
and
B. C. G.
Gimenez
, “
Microplastics in the marine environment: Current trends and future perspectives
,”
Mar. Pollut. Bull.
97
,
5
12
(
2015
).
25.
T. S.
Galloway
,
M.
Cole
, and
C.
Lewis
, “
Interactions of microplastic debris throughout the marine ecosystem
,”
Nat. Ecol. Evol.
1
,
0116
(
2017
).
26.
L.
Van Cauwenberghe
,
A.
Vanreusel
,
J.
Mees
, and
C. R.
Janssen
, “
Microplastic pollution in deep-sea sediments
,”
Environ. Pollut.
182
,
495
499
(
2013
).
27.
L.
Van Cauwenberghe
,
L.
Devriese
,
F.
Galgani
,
J.
Robbens
, and
C. R.
Janssen
, “
Microplastics in sediments: A review of techniques, occurrence and effects
,”
Mar. Environ. Res.
111
,
5
17
(
2015
).
28.
L.
Khatmullina
and
I.
Isachenko
, “
Settling velocity of microplastic particles of regular shapes
,”
Mar. Pollut. Bull.
114
,
871
880
(
2017
).
29.
W. M.
van Rees
,
A.
Leonard
,
D. I.
Pullin
, and
P.
Koumoutsakos
, “
A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers
,”
J. Comput. Phys.
230
,
2794
2805
(
2011
).
30.
F.
De Lillo
,
M.
Cencini
,
S.
Musacchio
, and
G.
Boffetta
, “
Clustering and turbophoresis in a shear flow without walls
,”
Phys. Fluids
28
,
035104
(
2016
).
31.
R.
van de Weygaert
and
V.
Icke
, “
Fragmenting the universe. II. Voronoi vertices as Abell clusters
,”
Astron. Astrophys.
213
,
1
9
(
1989
).
32.
R.
Monchaux
,
M.
Bourgoin
, and
A.
Cartellier
, “
Preferential concentration of heavy particles: A Voronoï analysis
,”
Phys. Fluids
22
,
103304
(
2010
).
33.
R.
Monchaux
,
M.
Bourgoin
, and
A.
Cartellier
, “
Analyzing preferential concentration and clustering of inertial particles in turbulence
,”
Int. J. Multiphase Flow
40
,
1
18
(
2012
).
34.
M.
García-Villalba
,
A. G.
Kidanemariam
, and
M.
Uhlmann
, “
DNS of vertical plane channel flow with finite-size particles: Voronoi analysis, acceleration statistics and particle-conditioned averaging
,”
Int. J. Multiphase Flow
46
,
54
74
(
2012
).
35.
J. C. R.
Hunt
,
A. A.
Wray
, and
P.
Moin
, “
Eddies, streams, and convergence zones in turbulent flows
,” Center for Turbulence Research Report CTR-S88, pp.
193
208
,
1988
.
36.
S.
Balachandar
and
J. K.
Eaton
, “
Turbulent dispersed multiphase flow
,”
Annu. Rev. Fluid Mech.
42
,
111
133
(
2010
).
37.
S.
Sundaram
and
L. R.
Collins
, “
Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations
,”
J. Fluid Mech.
335
,
75
109
(
1997
).
38.
J.
Bec
,
L.
Biferale
,
G.
Boffetta
,
A.
Celani
,
M.
Cencini
,
A.
Lanotte
,
S.
Musacchio
, and
F.
Toschi
, “
Acceleration statistics of heavy particles in turbulence
,”
J. Fluid Mech.
550
,
349
358
(
2006
).
39.
N.
Egidi
and
P.
Maponi
, “
A Sherman–Morrison approach to the solution of linear systems
,”
J. Comput. Appl. Math.
189
,
703
718
(
2006
).
40.
R.
Jayaram
,
J. J. J.
Gillissen
,
L.
Zhao
, and
H. I.
Andersson
, “
Numerical solution of Poisson equation using Sherman–Morrison algorithm in Taylor–Green vortex flow
,” in
Proceedings of 10th National Conference on Computational Mechanics, Trondheim, Norway
(
CIMNE
,
2019
), pp.
197
210
.
41.
D.
Mitra
,
N. E. L.
Haugen
, and
I.
Rogachevskii
, “
Turbophoresis in forced inhomogeneous turbulence
,”
Eur. Phys. J. Plus
133
,
35
(
2018
).
42.
L.
Schiller
and
A. Z.
Naumann
, “
Über due grundlegenden Berechnungen bei der Schwerkraft aufereitung
,”
Z. Ver. Deutch. Ing.
77
,
318
320
(
1933
).
43.
P. H.
Mortensen
,
H. I.
Andersson
,
J. J. J.
Gillissen
, and
B. J.
Boersma
, “
Particle spin in a turbulent shear flow
,”
Phys. Fluids
19
,
078109
(
2007
).
44.
L.
Zhao
,
H. I.
Andersson
, and
J. J. J.
Gillissen
, “
Turbulence modulation and drag reduction by spherical particles
,”
Phys. Fluids
22
,
081702
(
2010
).
45.
L.
Zhao
,
C.
Marchioli
, and
H. I.
Andersson
, “
Stokes number effects on particle slip velocity in wall-bounded turbulence and implications for dispersion models
,”
Phys. Fluids
24
,
021705
(
2012
).
46.
J.-S.
Ferenc
and
Z.
Néda
, “
On the size distribution of Poisson Voronoi cells
,”
Physica A
385
,
518
526
(
2007
).
47.
R. C.
Hogan
and
J. N.
Cuzzi
, “
Stokes and Reynolds number dependence of preferential particle concentration in simulated three-dimensional turbulence
,”
Phys. Fluids
13
,
2938
2945
(
2001
).
48.
M. W.
Reeks
, “
Transport, mixing and agglomeration of particles in turbulent flows
,”
Flow, Turbul. Combust.
92
,
3
25
(
2014
).
49.
L.
Zhao
,
H. I.
Andersson
, and
J. J. J.
Gillissen
, “
Interphasial energy transfer and particle dissipation in particle-laden wall turbulence
,”
J. Fluid Mech.
715
,
32
59
(
2013
).
You do not currently have access to this content.