A deterministic particle–particle agglomeration technique is applied together with direct numerical simulation and four-way coupled Lagrangian particle tracking in order to accurately simulate and investigate fully coupled agglomerating particle-laden channel flows at a shear Reynolds number, Reτ = 180. The collision outcome determination (recoil or aggregate) is based on the balance between kinetic energy dispersed in the collision and the work required to overcome the van der Waals attractive potential. The influence of particle size (dP = 202 μm, 286 μm, and 405 μm), both at a fixed volume fraction (ϕP = 10−3) and a fixed primary injected particle number (NP = 109 313), on the resulting collision and agglomeration dynamics is investigated. Attention is also focused on how collision and agglomeration rates vary throughout the wall-normal regions of the channel flow. The results demonstrate that the normalized collision rates are similar for all particle sizes at the fixed volume fraction but increase with particle size at the fixed particle number, and a preference is observed for collisions to occur close to the walls. Despite this, in all cases considered here, agglomeration events are most frequent at the center of the channel, with agglomeration efficiencies also peaking in this region. In terms of particle diameter effects, the smallest particles exhibit the greatest preference to aggregate, given that a collision has already occurred. Furthermore, whereas normalized collision and agglomeration event counts show differing diameter-dependence based on whether the number of primary particles or the volume fraction is fixed, agglomeration rates show diameter-independence and as such are based solely on particle size and local dispersive properties. Analysis of the dynamic collision properties throughout the channel confirms that agglomeration is favored within the bulk flow region due to low relative particle velocities and small collision angles at this location. The temporal evolution of important interaction properties is investigated, all of which demonstrate stability over the course of the time simulated. Particle diameter is also shown to influence the long-term population of higher-order agglomerates, with (for a given volume fraction) smaller particles aggregating faster to form larger particles. The systems studied, which resemble those present in the processing of nuclear waste, all exhibit substantial agglomeration over the time considered. This reinforces the importance of accurately modeling agglomeration dynamics in flows where electrokinetic interactions are important in order to correctly predict multiphase flow properties over long timeframes.

1.
Alletto
,
M.
, “
Numerical investigation of the influence of particle-particle and particle-wall collisions in turbulent wall-bounded flows at high mass loadings
,” Ph.D. thesis,
Helmut-Schmidt University
,
2014
.
2.
Almohammed
,
N.
and
Breuer
,
M.
, “
Modeling and simulation of agglomeration in turbulent particle-laden flows: A comparison between energy-based and momentum-based agglomeration models
,”
Powder Technol.
294
,
373
402
(
2016
).
3.
Anh Ho
,
C.
and
Sommerfeld
,
M.
, “
Modelling of micro-particle agglomeration in turbulent flows
,”
Chem. Eng. Sci.
57
,
3073
3084
(
2002
).
4.
Balakin
,
B.
,
Hoffmann
,
A. C.
, and
Kosinski
,
P.
, “
The collision efficiency in a shear flow
,”
Chem. Eng. Sci.
68
,
305
312
(
2012
).
5.
Boivin
,
M.
,
Simonin
,
O.
, and
Squires
,
K. D.
, “
Direct numerical simulation of turbulence modulation by particles in isotropic turbulence
,”
J. Fluid Mech.
375
,
235
263
(
1998
).
6.
Breuer
,
M.
and
Almohammed
,
N.
, “
Modeling and simulation of particle agglomeration in turbulent flows using a hard-sphere model with deterministic collision detection and enhanced structure models
,”
Int. J. Multiphase Flow
73
,
171
206
(
2015
).
7.
Charalampous
,
G.
and
Hardalupas
,
Y.
, “
Collisions of droplets on spherical particles
,”
Phys. Fluids
29
,
103305
(
2017
).
8.
Chen
,
M.
,
Kontomaris
,
K.
, and
McLaughlin
,
J. B.
, “
Direct numerical simulation of droplet collisions in a turbulent channel flow. Part I: Collision algorithm
,”
Int. J. Multiphase Flow
24
,
1079
1103
(
1999
).
9.
Chen
,
R.
,
Zhang
,
L.
,
Zang
,
D.
, and
Shen
,
W.
, “
Blood drop patterns: Formation and applications
,”
Adv. Colloid Interface Sci.
231
,
1
14
(
2016
).
10.
Choi
,
Y. J.
and
Djilali
,
N.
, “
Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow
,”
Phys. Fluids
28
,
013304
(
2016
).
11.
Chun
,
J.
,
Oh
,
T.
,
Luna
,
M.
, and
Schweiger
,
M.
, “
Effect of particle size distribution on slurry rheology: Nuclear waste simulant slurries
,”
Colloids Surf., A
384
,
304
310
(
2011
).
12.
Daitche
,
A.
, “
On the role of the history force for inertial particles in turbulence
,”
J. Fluid Mech.
782
,
567
593
(
2015
).
13.
Dizaji
,
F. F.
and
Marshall
,
J. S.
, “
An accelerated stochastic vortex structure method for particle collision and agglomeration in homogeneous turbulence
,”
Phys. Fluids
28
,
113301
(
2016
).
14.
Eaton
,
J. K.
, “
Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking
,”
Int. J. Multiphase Flow
35
,
792
800
(
2009
).
15.
Eaton
,
J. K.
and
Fessler
,
J. R.
, “
Preferential concentration of particles by turbulence
,”
Int. J. Multiphase Flow
20
,
169
209
(
1994
).
16.
Elghobashi
,
S.
, “
On predicting particle-laden turbulent flows
,”
Appl. Sci. Res.
52
,
309
329
(
1994
).
17.
Elghobashi
,
S.
and
Truesdell
,
G. C.
, “
Direct simulation of particle dispersion in a decaying isotropic turbulence
,”
J. Fluid Mech.
242
,
655
700
(
2006
).
18.
Fairweather
,
M.
and
Hurn
,
J.-P.
, “
Validation of an anisotropic model of turbulent flows containing dispersed solid particles applied to gas-solid jets
,”
Comput. Chem. Eng.
32
,
590
599
(
2008
).
19.
Fessler
,
J. R.
,
Kulick
,
J. D.
, and
Eaton
,
J. K.
, “
Preferential concentration of heavy particles in a turbulent channel flow
,”
Phys. Fluids
6
,
3742
3749
(
1994
).
20.
Fischer
,
P. F.
,
Lottes
,
J. W.
, and
Kerkemeier
,
S. G.
, Nek5000, available at: http://nek5000.mcs.anl.gov/; accessed September 1,
2008
.
21.
Folini
,
D.
,
Ubl
,
S.
, and
Kaufmann
,
P.
, “
Lagrangian particle dispersion modeling for the high Alpine site Jungfraujoch
,”
J. Geophys. Res.: Atmos.
113
,
D18111
, (
2008
).
22.
Fujita
,
M.
and
Yamaguchi
,
Y.
, “
Multiscale simulation method for self-organization of nanoparticles in dense suspension
,”
J. Comput. Phys.
223
,
108
120
(
2007
).
23.
Guha
,
D.
,
Ramachandran
,
P. A.
, and
Dudukovic
,
M. P.
, “
Flow field of suspended solids in a stirred tank reactor by Lagrangian tracking
,”
Chem. Eng. Sci.
62
,
6143
6154
(
2007
).
24.
Henry
,
C.
,
Minier
,
J.-P.
,
Pozorski
,
J.
, and
Lefèvre
,
G.
, “
A new stochastic approach for the simulation of agglomeration between colloidal particles
,”
Langmuir
29
,
13694
13707
(
2013
).
25.
Homann
,
H.
and
Bec
,
J.
, “
Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow
,”
J. Fluid Mech.
651
,
81
91
(
2010
).
26.
Hoomans
,
B. P. B.
,
Kuipers
,
J. A. M.
,
Briels
,
W. J.
, and
van Swaaij
,
W. P. M.
, “
Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach
,”
Chem. Eng. Sci.
51
,
99
118
(
1996
).
27.
Ireland
,
P. J.
,
Bragg
,
A. D.
, and
Collins
,
L. R.
, “
The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects
,”
J. Fluid Mech.
796
,
617
658
(
2016
).
28.
Kosinski
,
P.
and
Hoffmann
,
A. C.
, “
Extended hard-sphere model and collisions of cohesive particles
,”
Phys. Rev. E
84
,
031303
(
2011
).
29.
Krozel
,
J. W.
, “
Electrokinetic interactions between two spheres: The role of surface charge transport in coagulation
,”
J. Colloid Interface Sci.
163
,
437
453
(
1994
).
30.
Kuerten
,
J.
and
Vreman
,
A.
, “
Can turbophoresis be predicted by large-eddy simulation?
,”
Phys. Fluids
17
,
011701
(
2005
).
31.
Kulick
,
J. D.
,
Fessler
,
J. R.
, and
Eaton
,
J. K.
, “
Particle response and turbulence modification in fully developed channel flow
,”
J. Fluid Mech.
277
,
109
134
(
1994
).
32.
Kussin
,
J.
and
Sommerfeld
,
M.
, “
Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness
,”
Exp. Fluids
33
,
143
159
(
2002
).
33.
Laín
,
S.
,
Sommerfeld
,
M.
, and
Kussin
,
J.
, “
Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow
,”
Int. J. Heat Fluid Flow
23
,
647
656
(
2002
).
34.
Li
,
Y.
,
McLaughlin
,
J. B.
,
Kontomaris
,
K.
, and
Portela
,
L.
, “
Numerical simulation of particle-laden turbulent channel flow
,”
Phys. Fluids
13
,
2957
2967
(
2001
).
35.
Lucci
,
F.
,
Ferrante
,
A.
, and
Elghobashi
,
S.
, “
Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylor-length-scale size?
,”
Phys. Fluids
23
,
025101
(
2011
).
36.
Marchioli
,
C.
and
Soldati
,
A.
, “
Mechanisms for particle transfer and segregation in a turbulent boundary layer
,”
J. Fluid Mech.
468
,
283
315
(
2002
).
37.
Marchioli
,
C.
,
Soldati
,
A.
,
Kuerten
,
J.
,
Arcen
,
B.
,
Tanière
,
A.
,
Goldensoph
,
G.
,
Squires
,
K.
,
Cargnelutti
,
M.
, and
Portela
,
L.
, “
Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test
,”
Int. J. Multiphase Flow
34
,
879
893
(
2008
).
38.
Maxey
,
M.
, “
The motion of small spherical particles in a cellular flow field
,”
Phys. Fluids
30
,
1915
1928
(
1987
).
39.
Mortimer
,
L. F.
,
Njobuenwu
,
D. O.
, and
Fairweather
,
M.
, “
Near-wall dynamics of inertial particles in dilute turbulent channel flows
,”
Phys. Fluids
31
,
063302
(
2019
).
40.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, “
Direct numerical simulation of turbulent channel flow up to Reτ = 590
,”
Phys. Fluids
11
,
943
945
(
1999
).
41.
Njobuenwu
,
D. O.
and
Fairweather
,
M.
, “
Deterministic modelling of particle agglomeration in turbulent flow
,” in
Proceedings of the Eighth International Symposium on Turbulence, Heat and Mass Transfer
(
Begel House, Inc.
,
New York
,
2015
), p.
587
.
42.
Njobuenwu
,
D. O.
and
Fairweather
,
M.
, “
Simulation of deterministic energy-balance particle agglomeration in turbulent liquid-solid flows
,”
Phys. Fluids
29
,
083301
(
2017
).
43.
Njobuenwu
,
D. O.
and
Fairweather
,
M.
, “
Large eddy simulation of particle agglomeration with shear breakup in turbulent channel flow
,”
Phys. Fluids
30
,
063303
(
2018
).
44.
Oesterle
,
B.
and
Petitjean
,
A.
, “
Simulation of particle-to-particle interactions in gas solid flows
,”
Int. J. Multiphase Flow
19
,
199
211
(
1993
).
45.
Pan
,
Y.
and
Banerjee
,
S.
, “
Numerical simulation of particle interactions with wall turbulence
,”
Phys. Fluids
8
,
2733
2755
(
1996
).
46.
Riley
,
J. J.
and
Patterson
, Jr.,
G.
, “
Diffusion experiments with numerically integrated isotropic turbulence
,”
Phys. Fluids
17
,
292
297
(
1974
).
47.
Roure
,
G. A.
and
Cunha
,
F. R.
, “
Hydrodynamic dispersion and aggregation induced by shear in non-Brownian magnetic suspensions
,”
Phys. Fluids
30
,
122002
(
2018
).
48.
Schutte
,
K. C. J.
,
Portela
,
L. M.
,
Twerda
,
A.
, and
Henkes
,
R. A. W. M.
, “
Hydrodynamic perspective on asphaltene agglomeration and deposition
,”
Energy Fuels
29
,
2754
2767
(
2015
).
49.
Shook
,
C. A.
and
Roco
,
M. C.
,
Slurry Flow: Principles and Practice
(
Butterworth-Heinemann
,
Stoneham
,
1991
).
50.
Sommerfeld
,
M.
, “
Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence
,”
Int. J. Multiphase Flow
27
,
1829
1858
(
2001
).
51.
Squires
,
K. D.
and
Eaton
,
J. K.
, “
Preferential concentration of particles by turbulence
,”
Phys. Fluids A
3
,
1169
1178
(
1991
).
52.
Tingey
,
J.
,
Bunker
,
B.
,
Graff
,
G.
,
Keeper
,
K.
,
Lea
,
A.
, and
Rector
,
D.
, “
Colloidal agglomerates in tank sludge and their impact on waste processing
,”
MRS Online Proc. Libr. Arch.
556
,
1315
(
1999
).
53.
Tomas
,
J.
, “
Adhesion of ultrafine particles—A micromechanical approach
,”
Chem. Eng. Sci.
62
,
1997
2010
(
2007
).
54.
Vdović
,
N.
and
Bišćan
,
J.
, “
Electrokinetics of natural and synthetic calcite suspensions
,”
Colloids Surf., A
137
,
7
14
(
1998
).
55.
Vreman
,
A. W.
and
Kuerten
,
J. G. M.
, “
Comparison of direct numerical simulation databases of turbulent channel flow at Reτ = 180
,”
Phys. Fluids
26
,
015102
(
2014
).
56.
Vreman
,
B.
,
Geurts
,
B. J.
,
Deen
,
N.
,
Kuipers
,
J.
, and
Kuerten
,
J. G.
, “
Two- and four-way coupled Euler–Lagrangian large-eddy simulation of turbulent particle-laden channel flow
,”
Flow, Turbul. Combust.
82
,
47
(
2009
).
57.
Wang
,
J.
,
Shi
,
Q.
,
Huang
,
Z.
,
Gu
,
Y.
,
Musango
,
L.
, and
Yang
,
Y.
, “
Experimental investigation of particle size effect on agglomeration behaviors in gas-solid fluidized beds
,”
Ind. Eng. Chem. Res.
54
,
12177
12186
(
2015
).
58.
Yamamoto
,
Y.
,
Potthoff
,
M.
,
Tanaka
,
T.
,
Kajishima
,
T.
, and
Tsuji
,
Y.
, “
Large-eddy simulation of turbulent gas-particle flow in a vertical channel: Effect of considering inter-particle collisions
,”
J. Fluid Mech.
442
,
303
334
(
2001
).
59.
Zhao
,
F.
,
George
,
W.
, and
Van Wachem
,
B.
, “
Four-way coupled simulations of small particles in turbulent channel flow: The effects of particle shape and Stokes number
,”
Phys. Fluids
27
,
083301
(
2015
).
You do not currently have access to this content.