A filament of liquid is usually unstable and breaks up into small droplets, while a filament of polymer solution is known to be quite stable against such instability, and they form a stable configuration of a filament connecting two spherical droplets. If the droplets are fixed in space, the liquid flows from the filament region to the droplet region to reduce the surface energy and the filament gets thinner. If the whole liquid is placed in another viscous fluid, the droplets approach each other and the filament can get thicker. Here, we study the dynamics of such a system. We derive time evolution equations for the radius and the length of the filament taking into account the fluid flux from the filament to the droplets and the motion of the droplets. We will show that (a) if the centers of the droplets are fixed, the filament thins following the classical prediction of Entov and Hinch and (b) if the droplets are mobile (subject to the Stokes drag in the viscous medium), the thinning of the filament is suppressed and, under certain conditions, the filament thickens. This theory explains the phenomena observed by Yang and Xu [“Coalescence of two viscoelastic droplets connected by a string,” Phys. Fluids 20, 043101 (2008)] in a four-roller mill device.

1.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena
(
Springer
,
2004
).
2.
J.
Eggers
, “
Nonlinear dynamics and breakup of free-surface flows
,”
Rev. Mod. Phys.
69
,
865
930
(
1997
).
3.
G. H.
McKinley
and
T.
Sridhar
, “
Filament-stretching rheometry of complex fluids
,”
Annu. Rev. Fluid Mech.
34
,
375
415
(
2002
).
4.
A.
Bach
,
H. K.
Rasmussen
, and
O.
Hassager
, “
Extensional viscosity for polymer melts measured in the filament stretching rheometer
,”
J. Rheol.
47
,
429
441
(
2003
).
5.
S. L.
Anna
and
G. H.
McKinley
, “
Elasto-capillary thinning and breakup of model elastic liquids
,”
J. Rheol.
45
,
115
138
(
2001
).
6.
J.
Dinic
and
V.
Sharma
, “
Macromolecular relaxation, strain, and extensibility determine elastocapillary thinning and extensional viscosity of polymer solutions
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
8766
8774
(
2019
).
7.
J.
Dinic
and
V.
Sharma
, “
Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method
,”
Phys. Fluids
31
,
021211
(
2019
).
8.
J.
Yang
and
Y.
Xu
, “
Coalescence of two viscoelastic droplets connected by a string
,”
Phys. Fluids
20
,
043101
(
2008
).
9.
G. I.
Taylor
, “
The formation of emulsions in definable fields of flow
,”
Proc. R. Soc. A
146
,
501
523
(
1934
).
10.
G. G.
Fuller
and
L. G.
Leal
, “
Flow birefringence of dilute polymer solutions in two-dimensional flows
,”
Rheol. Acta
19
,
580
600
(
1980
).
11.
V. M.
Entov
and
E. J.
Hinch
, “
Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid
,”
J. Non-Newtonian Fluid Mech.
72
,
31
53
(
1997
).
12.
C.
Clasen
,
J.
Eggers
,
M. A.
Fontelos
,
J.
Li
, and
G. H.
McKinley
, “
The beads-on-string structure of viscoelastic threads
,”
J. Fluid Mech.
556
,
283
308
(
2006
).
13.
A. V.
Bazilevskii
and
A. N.
Rozhkov
, “
Dynamics of capillary breakup of elastic jets
,”
Fluid Dyn.
49
,
827
843
(
2014
).
14.
A. B.
Bazilevskii
and
A. N.
Rozhkov
, “
Dynamics of the capillary breakup of a bridge in an elastic fluid
,”
Fluid Dyn.
50
,
800
811
(
2015
).
15.
J.
Zhou
and
M.
Doi
, “
Dynamics of viscoelastic filaments based on Onsager principle
,”
Phys. Rev. Fluids
3
,
084004
(
2018
).
16.
M.
Doi
,
Soft Matter Physics
(
Oxford University Press
,
2013
).
17.
X.
Xu
,
Y.
Di
, and
M.
Doi
, “
Variational method for contact line problems in sliding liquids
,”
Phys. Fluids
28
,
087101
(
2016
).
18.
Y.
Di
,
X.
Xu
, and
M.
Doi
, “
Theoretical analysis for meniscus rise of a liquid contained between a flexible film and a solid wall
,”
Europhys. Lett.
113
,
36001
(
2016
).
19.
Y.
Di
,
X.
Xu
,
J.
Zhou
, and
M.
Doi
, “
Thin film dynamics in coating problems using Onsager principle
,”
Chin. Phys. B
27
,
024501
(
2018
).
20.
T.
Yu
,
J.
Zhou
, and
M.
Doi
, “
Capillary imbibition in a square tube
,”
Soft Matter
14
,
9263
9270
(
2018
).
21.
T.
Yu
,
Y.
Jiang
,
J.
Zhou
, and
M.
Doi
, “
Dynamics of Taylor rising
,”
Langmuir
35
,
5183
5190
(
2019
).
22.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
, 3rd ed., Course of Theoretical Physics Vol. 7 (
Butterworth-Heinemann
,
1986
).
You do not currently have access to this content.