The resulting jet of two interacting laser-induced cavitation bubbles is optimized and studied as a technique for micro-scale targeting of soft materials. High controllability of double-bubble microjets can make such configurations favorable over single bubbles for applications where risk of ablation or thermal damage should be minimized such as in soft biological structures. In this study, double-bubble jets are directed toward an agar gel-based skin phantom to explore the application of micro-scale injection and toward a soft paraffin to quantify the targeting effectiveness of double-bubble over single-bubble jetting. The sharp elongation during the double-bubble process leads to fast, focused jets reaching average magnitudes of Ujet = 87.6 ± 9.9 m/s. When directed to agar, the penetration length and injected volume increase at ∼250 μm and 5 nl per subsequent jets. Such values are achieved without the use of fabricated micro-nozzles seen in existing needle-free laser injection systems. In soft paraffin, double-bubble jetting produces the same penetration length as single-bubble jetting, but with ∼45% reduction in damage area at a 3× greater target distance. Thus, double-bubble jetting can achieve smaller impact areas and greater target distances, potentially reducing collateral thermal damage and effects of strong shockwave pressures.

1.
F.
Reuter
and
R.
Mettin
, “
Mechanisms of single bubble cleaning
,”
Ultrason. Sonochem.
29
,
550
(
2016
).
2.
C.-D.
Ohl
,
M.
Arora
,
R.
Dijkink
,
V.
Janve
, and
D.
Lohse
, “
Surface cleaning from laser-induced cavitation bubbles
,”
Appl. Phys. Lett.
89
,
074102
(
2006
).
3.
B.
Verhaagen
and
D.
Fernández Rivas
, “
Measuring cavitation and its cleaning effect
,”
Ultrason. Sonochem.
29
,
619
(
2016
).
4.
R.
Dijkink
,
S.
Le Gac
,
E.
Nijhuis
,
A.
Van Den Berg
,
I.
Vermes
,
A.
Poot
, and
C.-D.
Ohl
, “
Controlled cavitation-cell interaction: Trans-membrane transport and viability studies
,”
Phys. Med. Biol.
53
,
375
(
2008
).
5.
Y.
Arita
,
M.
Ploschner
,
M.
Antkowiak
,
F.
Gunn-Moore
, and
K.
Dholakia
, “
Laser-induced breakdown of an optically trapped gold nanoparticle for single cell transfection
,”
Opt. Lett.
38
,
3402
(
2013
).
6.
C.-w.
Wei
,
J.
Xia
,
M.
Lombardo
,
C.
Perez
,
B.
Arnal
,
K.
Larson-Smith
,
I.
Pelivanov
,
T.
Matula
,
L.
Pozzo
, and
M.
O’Donnell
, “
Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: In vitro results
,”
Opt. Lett.
39
,
2599
(
2014
).
7.
S. D.
George
,
S.
Chidangil
, and
D.
Mathur
, “
Minireview: Laser-induced formation of microbubbles-biomedical implications
,”
Langmuir
35
,
010139
(
2019
).
8.
N.
Zamora-Romero
,
V.
Robles
,
C.
Alvarez
,
N.
Cuando-Espitia
,
L. F.
Devia-Cruz
,
E.
Penilla
,
D. L.
Halaney
, and
G.
Aguilar
, in
Optical InfoBase Conference Papers
, Volume: Part F61-E (
OSA
,
2017
), p.
1041707
.
9.
D.
Banks
,
V.
Robles
,
B.
Zhang
,
L. F.
Devia-Cruz
,
S.
Camacho-Lopez
, and
G.
Aguilar
, “
Planar laser induced fluorescence for temperature measurement of optical thermocavitation
,”
Exp. Therm. Fluid Sci.
103
,
385
(
2019
).
10.
B.
Liu
,
J.
Cai
, and
X.
Huai
, “
Heat transfer with the growth and collapse of cavitation bubble between two parallel heated walls
,”
Int. J. Heat Mass Transfer
78
,
830
(
2014
).
11.
W.
Lauterborn
and
H.
Bolle
, “
Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary
,”
J. Fluid Mech.
72
,
391
(
1975
).
12.
E. A.
Brujan
,
G. S.
Keen
,
A.
Vogel
, and
J. R.
Blake
, “
The final stage of the collapse of a cavitation bubble close to a rigid boundary
,”
Phys. Fluids
14
,
85
(
2002
).
13.
G. Y.
Yuan
,
B. Y.
Ni
,
Q. G.
Wu
,
Y. Z.
Xue
, and
A. M.
Zhang
, “
An experimental study on the dynamics and damage capabilities of a bubble collapsing in the neighborhood of a floating ice cake
,”
J. Fluids Struct.
92
,
102833
(
2020
).
14.
L.
Van Wijngaarden
, “
Mechanics of collapsing cavitation bubbles
,”
Ultrason. Sonochem.
29
,
524
(
2016
).
15.
P. A.
Barnes
and
K. E.
Rieckhoff
, “
Laser induced underwater sparks
,”
Appl. Phys. Lett.
13
,
282
(
1968
).
16.
A.
Vogeland
and
W.
Lauterborn
, “
Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries
,”
J. Acoust. Soc. Am.
84
,
719
(
1988
).
17.
A.
Vogel
,
W.
Lauterborn
, and
R.
Timm
, “
Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary
,”
J. Fluid Mech.
206
,
299
(
1989
).
18.
C.
Lechner
,
W.
Lauterborn
,
M.
Koch
, and
R.
Mettin
, “
Fast, thin jets from bubbles expanding and collapsing in extreme vicinity to a solid boundary: A numerical study
,”
Phys. Rev. Fluids
4
,
021601(R)
(
2019
).
19.
E.-A.
Brujan
,
K.
Nahen
,
P.
Schmidt
, and
A.
Vogel
, “
Dynamics of laser-induced cavitation bubbles near an elastic boundary
,”
J. Fluid Mech.
433
,
251
(
2001
).
20.
E.-A.
Brujan
,
K.
Nahen
,
P.
Schmidt
, and
A.
Vogel
, “
Dynamics of laser-induced cavitation bubbles near elastic boundaries: Influence of the elastic modulus
,”
J. Fluid Mech.
433
,
283
(
2001
).
21.
D.
Horvat
,
U.
Orthaber
,
J.
Schille
,
L.
Hartwig
,
U.
Löschner
,
A.
Vrečko
, and
R.
Petkovšek
, “
Laser-induced bubble dynamics inside and near a gap between a rigid boundary and an elastic membrane
,”
Int. J. Multiphase Flow
100
,
119
(
2018
).
22.
A.
Vogel
and
V.
Venugopalan
, “
Mechanisms of pulsed laser ablation of biological tissues
,”
Chem. Rev.
103
,
577
(
2003
).
23.
W.
Xu
,
Y.
Zhai
,
J.
Luo
,
Q.
Zhang
, and
J.
Li
, “
Experimental study of the influence of flexible boundaries with different elastic moduli on cavitation bubbles
,”
Exp. Therm. Fluid Sci.
109
,
109897
(
2019
).
24.
B.
Han
,
K.
Köhler
,
K.
Jungnickel
,
R.
Mettin
,
W.
Lauterborn
, and
A.
Vogel
, “
Dynamics of laser-induced bubble pairs
,”
J. Fluid Mech.
771
,
706
(
2015
).
25.
L. W.
Chew
,
E.
Klaseboer
,
S. W.
Ohl
, and
B. C.
Khoo
, “
Interaction of two differently sized oscillating bubbles in a free field
,”
Phys. Rev. E
84
,
066307
(
2011
).
26.
C.-T.
Hsiao
,
J.-K.
Choi
,
S.
Singh
,
G. L.
Chahine
,
T. A.
Hay
,
Y. A.
Ilinskii
,
E. A.
Zabolotskaya
,
M. F.
Hamilton
,
G.
Sankin
,
F.
Yuan
, and
P.
Zhong
, “
Modelling single- and tandem-bubble dynamics between two parallel plates for biomedical applications
,”
J. Fluid Mech.
716
,
137
(
2013
).
27.
J. C.
Stachowiak
,
T. H.
Li
,
A.
Arora
,
S.
Mitragotri
, and
D. A.
Fletcher
, “
Dynamic control of needle-free jet injection
,”
J. Controlled Release
135
,
104
(
2009
).
28.
J.
Baxter
and
S.
Mitragotri
, “
Jet-induced skin puncture and its impact on needle-free jet injections: Experimental studies and a predictive model
,”
J. Controlled Release
106
,
361
(
2005
).
29.
V.
Menezes
,
S.
Kumar
, and
K.
Takayama
, “
Shock wave driven liquid microjets for drug delivery
,”
J. Appl. Phys.
106
,
086102
(
2009
).
30.
C.
Berrospe-Rodriguez
,
C. W.
Visser
,
S.
Schlautmann
,
D. F.
Rivas
, and
R.
Ramos-Garcia
, “
Toward jet injection by continuous-wave laser cavitation
,”
J. Biomed. Opt.
22
,
1
(
2017
).
31.
Y.
Tagawa
,
N.
Oudalov
,
C. W.
Visser
,
I. R.
Peters
,
D.
van der Meer
,
C.
Sun
,
A.
Prosperetti
, and
D.
Lohse
, “
Highly focused supersonic microjets
,”
Phys. Rev. X
2
,
031002
(
2012
).
32.
T. H.
Han
and
J. J.
Yoh
, “
A laser based reusable microjet injector for transdermal drug delivery
,”
J. Appl. Phys.
107
,
103110
(
2010
).
33.
N.
Kyriazis
,
P.
Koukouvinis
, and
M.
Gavaises
, “
Numerical investigations on bubble-induced jetting and shock wave focusing: Application on a needle-free injection
,”
Proc. R. Soc. A
475
,
20180548
(
2019
).
34.
M.
Moradiafrapoli
and
J. O.
Marston
, “
High-speed video investigation of jet dynamics from narrow orifices for needle-free injection
,”
Chem. Eng. Res. Des.
117
,
110
(
2017
).
35.
L.
Oyarte Gálvez
,
M.
Brió Pérez
, and
D.
Fernández Rivas
, “
High speed imaging of solid needle and liquid micro-jet injections
,”
J. Appl. Phys.
125
,
144504
(
2019
).
36.
R.
Zaca-Morán
,
J.
Castillo-Mixcóatl
,
N. E.
Sierra-González
,
J. M.
Pérez-Corte
,
P.
Zaca-Morán
,
J. C.
Ramírez-San-Juan
,
R.
Ramos-García
, and
J. P.
Padilla-Martínez
, “
Theoretical and experimental study of acoustic waves generated by thermocavitation and its application in the generation of liquid jets
,”
Opt. Express
28
,
4928
(
2020
).
37.
J. P.
Padilla-Martinez
,
C.
Berrospe-Rodriguez
,
G.
Aguilar
,
J. C.
Ramirez-San-Juan
, and
R.
Ramos-Garcia
, “
Optic cavitation with CW lasers: A review
,”
Phys. Fluids
26
,
122007
(
2014
).
38.
S. F.
Rastopov
and
A. T.
Sukhodolsky
,
Proc. SPIE
1440
,
127
134
(
1990
).
39.
H.-j.
Jang
,
E.
Hur
,
Y.
Kim
,
S.-H.
Lee
,
N. G.
Kang
, and
J. J.
Yoh
, “
Laser-induced microjet injection into preablated skin for more effective transdermal drug delivery
,”
J. Biomed. Opt.
19
,
118002
(
2014
).
40.
P. A.
Quinto-Su
,
M.
Suzuki
, and
C. D.
Ohl
, “
Fast temperature measurement following single laser-induced cavitation inside a microfluidic gap
,”
Sci. Rep.
4
,
5445
(
2014
).
41.
Z.
Han
,
J.
Li
,
M.
Singh
,
C.
Wu
,
C.-h.
Liu
,
S.
Wang
,
R.
Idugboe
,
R.
Raghunathan
,
N.
Sudheendran
,
S. R.
Aglyamov
,
M. D.
Twa
, and
K. V.
Larin
, “
Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: A comparison study
,”
Phys. Med. Biol.
60
,
3531
(
2015
).
42.
X.
Liang
and
S. A.
Boppart
, “
Biomechanical properties of in vivo human skin from dynamic optical coherence elastography
,”
IEEE Trans. Biomed. Eng.
57
,
953
(
2013
).
43.
I.
Akhatov
,
O.
Lindau
,
A.
Topolnikov
,
R.
Mettin
,
N.
Vakhitova
, and
W.
Lauterborn
, “
Collapse and rebound of a laser-induced cavitation bubble
,”
Phys. Fluids
13
,
2805
(
2001
).
44.
P. K.
Kennedy
,
D. X.
Hammer
, and
B. A.
Rockwell
, “
Laser-induced breakdown in aqueous media
,”
Prog. Quantum Electron.
21
,
155
(
1997
).
45.
G. H.
Goldsztein
, “
Collapse and rebound of a gas bubble
,”
Stud. Appl. Math.
112
,
101
(
2004
).
46.
J.
Schramm
and
S.
Mitragotri
, “
Transdermal drug delivery by jet injectors: Energetics of jet formation and penetration
,”
Pharm. Res.
19
,
1673
(
2002
).
47.
K.
Cu
,
R.
Bansal
,
S.
Mitragotri
, and
D.
Fernandez Rivas
, “
Delivery strategies for skin: Comparison of nanoliter jets, needles and topical solutions
,”
Ann. Biomed. Eng.
(published online
2019
).
48.
E.
Giudice
and
J.
Campbell
, “
Needle-free vaccine delivery☆
,”
Adv. Drug Delivery Rev.
58
,
68
(
2006
).
49.
M.
Ahearne
,
Y.
Yang
,
A. J.
El Haj
,
K. Y.
Then
, and
K.-K.
Liu
, “
Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications
,”
J. R. Soc. Interface
2
,
455
(
2005
).
You do not currently have access to this content.