This paper constructs an optimization framework based on the data-informed self-adaptive quasi-steady model. The framework aims at achieving a specific aerodynamic force coefficient by optimizing the kinematic parameters of the flapping motion of an ellipsoid wing. All the model coefficients of this quasi-steady model are calibrated empirically by the data-informed training. At each optimization iteration, the data-informed training is implemented by the local ridge regression, where the initial training samples are extracted from simulation examples, and the weight coefficients are calculated by the compactly supported radial basis function with the previous optimal solution as the center point. Furthermore, a numerical simulation is conducted to evaluate the accurate aerodynamic force coefficient corresponding to the current optimal solution. The relative error between the accurate simulation result and optimization objective is calculated as the convergence criteria of the optimization. Then, the effects of the kinematic parameters on the time-averaged lift coefficient are first investigated, which indicate that the in-phase flapping with high flapping angle amplitude and medium geometric angle of attack amplitude is beneficial to the lift coefficient. Moreover, the kinematic optimization is conducted for a three-dimensional flapping ellipsoid wing in the hovering mode. The results demonstrate that the leading-edge vortex is crucial for the force generation. Moreover, in one flapping period, the asymmetrical wake and two unequal lift coefficient peaks emerge under the figure-O motion pattern while the vortex structures are highly symmetrical under the figure-8 motion pattern.

1.
M. F.
Platzer
,
K. D.
Jones
,
J.
Young
, and
J. C. S.
Lai
, “
Flapping wing aerodynamics: Progress and challenges
,”
AIAA J.
46
,
2136
2149
(
2008
).
2.
G. V.
Lauder
, “
Fish locomotion: Recent advances and new directions
,”
Annu. Rev. Mar. Sci.
7
,
521
545
(
2015
).
3.
M.
Moriche
,
O.
Flores
, and
M.
García-Villalba
, “
On the aerodynamic forces on heaving and pitching airfoils at low Reynolds number
,”
J. Fluid Mech.
828
,
395
423
(
2017
).
4.
K. D.
Von Ellenrieder
,
K.
Parker
, and
J.
Soria
, “
Flow structures behind a heaving and pitching finite-span wing
,”
J. Fluid Mech.
490
,
129
138
(
2003
).
5.
F. M.
Bos
,
D.
Lentink
,
B. W.
Van Oudheusden
, and
H.
Bijl
, “
Influence of wing kinematics on aerodynamic performance in hovering insect flight
,”
J. Fluid Mech.
594
,
341
368
(
2008
).
6.
M.
Xu
and
M.
Wei
, “
Using adjoint-based optimization to study kinematics and deformation of flapping wings
,”
J. Fluid Mech.
799
,
56
99
(
2016
).
7.
H.
Soueid
,
L.
Guglielmini
,
C.
Airiau
, and
A.
Bottaro
, “
Optimization of the motion of a flapping airfoil using sensitivity functions
,”
Comput. Fluids
38
,
861
874
(
2009
).
8.
A.
Gogulapati
,
P. P.
Friedmann
, and
J. R. R. A.
Martins
, “
Optimization of flexible flapping-wing kinematics in hover
,”
AIAA J.
52
,
2342
2354
(
2014
).
9.
M.
Kaya
,
I. H.
Tuncer
,
K. D.
Jones
, and
M. F.
Platzer
, “
Optimization of flapping motion parameters for two airfoils in a biplane configuration
,”
J. Aircr.
46
,
583
592
(
2009
).
10.
G. J.
Berman
and
Z. J.
Wang
, “
Energy-minimizing kinematics in hovering insect flight
,”
J. Fluid Mech.
582
,
153
168
(
2007
).
11.
L.
Zheng
,
T. L.
Hedrick
, and
R.
Mittal
, “
A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight
,”
J. Fluid Mech.
721
,
118
154
(
2013
).
12.
J. S.
Izraelevitz
and
M. S.
Triantafyllou
, “
Adding in-line motion and model-based optimization offers exceptional force control authority in flapping foils
,”
J. Fluid Mech.
742
,
5
34
(
2014
).
13.
S. P.
Sane
and
M. H.
Dickinson
, “
The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight
,”
J. Exp. Biol.
205
,
1087
1096
(
2002
).
14.
Q. T.
Truong
,
Q. V.
Nguyen
,
V. T.
Truong
,
H. C.
Park
,
D. Y.
Byun
, and
N. S.
Goo
, “
A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system
,”
Bioinspiration Biomimetics
6
,
036008
(
2011
).
15.
Y. J.
Lee
,
K. B.
Lua
,
T. T.
Lim
, and
K. S.
Yeo
, “
A quasi-steady aerodynamic model for flapping flight with improved adaptability
,”
Bioinspiration Biomimetics
11
,
036005
(
2016
).
16.
T.
Nakata
,
H.
Liu
, and
R. J.
Bomphrey
, “
A CFD-informed quasi-steady model of flapping-wing aerodynamics
,”
J. Fluid Mech.
783
,
323
343
(
2015
).
17.
J.
Fan
,
T.
Gasser
,
I.
Gijbels
,
M.
Brockmann
, and
J.
Engel
, “
Local polynomial regression: Optimal kernels and asymptotic minimax efficiency
,”
Ann. Inst. Stat. Math.
49
,
79
99
(
1997
).
18.
A. E.
Hoerl
and
R. W.
Kennard
, “
Ridge regression: Biased estimation for nonorthogonal problems
,”
Technometrics
12
,
55
67
(
1970
).
19.
H.
Wendland
, “
Error estimates for interpolation by compactly supported radial basis functions of minimal degree
,”
J. Approx. Theory
93
,
258
272
(
1998
).
20.
Z. J.
Wang
and
D.
Russell
, “
Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight
,”
Phys. Rev. Lett.
99
,
148101
(
2007
).
21.
A. T.
Bode-Oke
,
S.
Zeyghami
, and
H.
Dong
, “
Flying in reverse: Kinematics and aerodynamics of a dragonfly in backward free flight
,”
J. R. Soc. Interface
15
,
20180102
(
2018
).
22.
F. M.
Bos
,
B. W.
van Oudheusden
, and
H.
Bijl
, “
Wing performance and 3-D vortical structure formation in flapping flight
,”
J. Fluids Struct.
42
,
130
151
(
2013
).
23.
Y. H.
Chen
and
M.
Skote
, “
Study of lift enhancing mechanisms via comparison of two distinct flapping patterns in the dragonfly Sympetrum flaveolum
,”
Phys. Fluids
27
,
033604
(
2015
).
24.
G. D.
Weymouth
and
D. K. P.
Yue
, “
Boundary data immersion method for Cartesian-grid simulations of fluid-body interaction problems
,”
J. Comput. Phys.
230
,
6233
6247
(
2011
).
25.
D.
Bertsimas
and
S.
Vempala
, “
Solving convex programs by random walks
,”
J. ACM
51
,
540
556
(
2004
).
26.
D.
Kraft
, “
A software package for sequential quadratic programming
,” Forschungsbericht, Deutsche Forschungs-und Versuchsanstalt Fur Luft-und Raumfahrt,
1988
.
27.
J.-S.
Han
,
J.-K.
Kim
,
J. W.
Chang
, and
J.-H.
Han
, “
An improved quasi-steady aerodynamic model for insect wings that considers movement of the center of pressure
,”
Bioinspiration Biomimetics
10
,
046014
(
2015
).
28.
L. I.
Sedov
and
P. A.
Libby
, “
Two-dimensional problems in hydrodynamics and aerodynamics
,”
J. Appl. Mech.
33
,
237
(
1966
).
29.
R.
Żbikowski
, “
On aerodynamic modelling of an insect–like flapping wing in hover for micro air vehicles
,”
Philos. Trans. R. Soc., A
360
,
273
290
(
2002
).
30.
S.
Armanini
,
J.
Caetano
,
C.
de Visser
,
M.
Pavel
,
G.
de Croon
, and
M.
Mulder
, “
Modelling wing wake and tail aerodynamics of a flapping-wing micro aerial vehicle
,”
Int. J. Micro Air Veh.
11
,
1756829319833674
(
2019
).
You do not currently have access to this content.