This paper constructs an optimization framework based on the data-informed self-adaptive quasi-steady model. The framework aims at achieving a specific aerodynamic force coefficient by optimizing the kinematic parameters of the flapping motion of an ellipsoid wing. All the model coefficients of this quasi-steady model are calibrated empirically by the data-informed training. At each optimization iteration, the data-informed training is implemented by the local ridge regression, where the initial training samples are extracted from simulation examples, and the weight coefficients are calculated by the compactly supported radial basis function with the previous optimal solution as the center point. Furthermore, a numerical simulation is conducted to evaluate the accurate aerodynamic force coefficient corresponding to the current optimal solution. The relative error between the accurate simulation result and optimization objective is calculated as the convergence criteria of the optimization. Then, the effects of the kinematic parameters on the time-averaged lift coefficient are first investigated, which indicate that the in-phase flapping with high flapping angle amplitude and medium geometric angle of attack amplitude is beneficial to the lift coefficient. Moreover, the kinematic optimization is conducted for a three-dimensional flapping ellipsoid wing in the hovering mode. The results demonstrate that the leading-edge vortex is crucial for the force generation. Moreover, in one flapping period, the asymmetrical wake and two unequal lift coefficient peaks emerge under the figure-O motion pattern while the vortex structures are highly symmetrical under the figure-8 motion pattern.
Skip Nav Destination
Article navigation
April 2020
Research Article|
April 24 2020
Kinematic parameter optimization of a flapping ellipsoid wing based on the data-informed self-adaptive quasi-steady model
Hongyu Zheng (郑鸿宇)
;
Hongyu Zheng (郑鸿宇)
Center for Engineering and Scientific Computation, and School of Aeronautics and Astronautics, Zhejiang University
, Zhejiang 310027, China
Search for other works by this author on:
Fangfang Xie (谢芳芳)
;
Fangfang Xie (谢芳芳)
a)
Center for Engineering and Scientific Computation, and School of Aeronautics and Astronautics, Zhejiang University
, Zhejiang 310027, China
a)Author to whom correspondence should be addressed: fangfang_xie@zju.edu.cn
Search for other works by this author on:
Tingwei Ji (季廷炜);
Tingwei Ji (季廷炜)
Center for Engineering and Scientific Computation, and School of Aeronautics and Astronautics, Zhejiang University
, Zhejiang 310027, China
Search for other works by this author on:
Yao Zheng (郑耀)
Yao Zheng (郑耀)
Center for Engineering and Scientific Computation, and School of Aeronautics and Astronautics, Zhejiang University
, Zhejiang 310027, China
Search for other works by this author on:
a)Author to whom correspondence should be addressed: fangfang_xie@zju.edu.cn
Note: This paper is part of the Special Topic, Papers Selected from the 8th International Symposium on Physics of Fluids.
Physics of Fluids 32, 041904 (2020)
Article history
Received:
January 10 2020
Accepted:
April 06 2020
Citation
Hongyu Zheng, Fangfang Xie, Tingwei Ji, Yao Zheng; Kinematic parameter optimization of a flapping ellipsoid wing based on the data-informed self-adaptive quasi-steady model. Physics of Fluids 1 April 2020; 32 (4): 041904. https://doi.org/10.1063/1.5144642
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00