Understanding the propulsion mechanism of swimming microorganisms will facilitate the development of synthetic microswimmers for active cargo deliveries. Herein, we studied, theoretically and numerically, inertialess locomotion of a microswimmer—a spherical body propelled by two symmetrically actuated elastic filaments in the shape of a circular arc at rest, focusing on the effects of their uniform intrinsic curvature κ¯c. Combining the resistive force theory for viscous flow and Euler–Bernoulli beam theory for elastic filaments, the elasto-hydrodynamics was solved asymptotically. Our theory was verified by simulations using regularized Stokeslets posed on the filament centerlines, with and without considering hydrodynamic interactions (HIs) between the body and filaments. The asymptotic and numerical results showed qualitative agreement. Reasonable quantitative agreement between the asymptotic results and the numerical predictions neglecting body–filament HIs was observed, especially for small |κ¯c|. However, they deviated quantitatively from the numerical results with body–filament HIs, especially at a large κ¯c when the HIs became important owing to the short body–filament distance. The propulsive force generated by two arc-shaped filaments significantly depend on their uniform intrinsic curvature κ¯c. An appreciable increase in the thrust can be achieved by adjusting κ¯c, which qualitatively confirms and explains the experimentally reported propulsive enhancement facilitated by intrinsically curved appendages [Z. Ye, S. Régnier, and M. Sitti, “Rotating magnetic miniature swimming robots with multiple flexible flagella,” IEEE Trans. Rob. 30, 3–13 (2014)]. The increase in κ¯c can even change the sign of the thrust, leading to counter-intuitive, backward propulsion. The flow field reveals the hydrodynamic signature of the swimmer that shifts with time between a neutral swimmer, a pusher, and a puller.

1.
Z.
Ye
,
S.
Régnier
, and
M.
Sitti
, “
Rotating magnetic miniature swimming robots with multiple flexible flagella
,”
IEEE Trans. Rob.
30
,
3
13
(
2014
).
2.
E. M.
Purcell
, “
Life at low Reynolds number
,”
Am. J. Phys.
45
,
3
11
(
1977
).
3.
J.
Lighthill
, “
Flagellar hydrodynamics
,”
SIAM Rev.
18
,
161
230
(
1976
).
4.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
5.
E.
Gaffney
,
H.
Gadêlha
,
D.
Smith
,
J.
Blake
, and
J.
Kirkman-Brown
, “
Mammalian sperm motility: Observation and theory
,”
Annu. Rev. Fluid Mech.
43
,
501
528
(
2011
).
6.
J. S.
Guasto
,
R.
Rusconi
, and
R.
Stocker
, “
Fluid mechanics of planktonic microorganisms
,”
Annu. Rev. Fluid Mech.
44
,
373
400
(
2012
).
7.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers—Single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
,
056601
(
2015
).
8.
R. E.
Goldstein
, “
Green algae as model organisms for biological fluid dynamics
,”
Annu. Rev. Fluid Mech.
47
,
343
(
2015
).
9.
R.
Dreyfus
,
J.
Baudry
,
M. L.
Roper
,
M.
Fermigier
,
H. A.
Stone
, and
J.
Bibette
, “
Microscopic artificial swimmers
,”
Nature
437
,
862
(
2005
).
10.
E.
Gauger
and
H.
Stark
, “
Numerical study of a microscopic artificial swimmer
,”
Phys. Rev. E
74
,
021907
(
2006
).
11.
B. J.
Williams
,
S. V.
Anand
,
J.
Rajagopalan
, and
M. T. A.
Saif
, “
A self-propelled biohybrid swimmer at low Reynolds number
,”
Nat. Commun.
5
,
3081
(
2014
).
12.
C.
Huang
,
J.-a.
Lv
,
X.
Tian
,
Y.
Wang
,
Y.
Yu
, and
J.
Liu
, “
Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals
,”
Sci. Rep.
5
,
17414
(
2015
).
13.
H.-W.
Huang
,
M. S.
Sakar
,
A. J.
Petruska
,
S.
Pané
, and
B. J.
Nelson
, “
Soft micromachines with programmable motility and morphology
,”
Nat. Commun.
7
,
12263
(
2016
).
14.
A. M.
Maier
,
C.
Weig
,
P.
Oswald
,
E.
Frey
,
P.
Fischer
, and
T.
Liedl
, “
Magnetic propulsion of microswimmers with DNA-based flagellar bundles
,”
Nano Lett.
16
,
906
910
(
2016
).
15.
J.
Ali
,
U. K.
Cheang
,
J. D.
Martindale
,
M.
Jabbarzadeh
,
H. C.
Fu
, and
M. J.
Kim
, “
Bacteria-inspired nanorobots with flagellar polymorphic transformations and bundling
,”
Sci. Rep.
7
,
14098
(
2017
).
16.
Y.
Alapan
,
O.
Yasa
,
B.
Yigit
,
I. C.
Yasa
,
P.
Erkoc
, and
M.
Sitti
, “
Microrobotics and microorganisms: Biohybrid autonomous cellular robots
,”
Annu. Rev. Control, Rob., Auton. Syst.
2
,
205
(
2018
).
17.
H.-W.
Huang
,
F.
Uslu
,
P.
Katsamba
,
E.
Lauga
,
M.
Sakar
, and
B.
Nelson
, “
Adaptive locomotion of artificial microswimmers
,”
Sci. Adv.
5
,
eaau1532
(
2019
).
18.
M.
Sitti
, “
Miniature soft robots—Road to the clinic
,”
Nat. Rev. Mater.
3
,
74
75
(
2018
).
19.
G. I.
Taylor
, “
Analysis of the swimming of microscopic organisms
,”
Proc. R. Soc. London, Ser. A
209
,
447
461
(
1951
).
20.
G. I.
Taylor
, “
The action of waving cylindrical tails in propelling microscopic organisms
,”
Proc. R. Soc. London, Ser. A
211
,
225
239
(
1952
).
21.
K. E.
Machin
, “
Wave propagation along flagella
,”
J. Exp. Biol.
35
,
796
806
(
1958
), available at https://jeb.biologists.org/content/35/4/796.article-info.
22.
C. H.
Wiggins
and
R. E.
Goldstein
, “
Flexive and propulsive dynamics of elastica at low Reynolds number
,”
Phys. Rev. Lett.
80
,
3879
(
1998
).
23.
P. V.
Bayly
and
S. K.
Dutcher
, “
Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella
,”
J. R. Soc. Interface
13
,
20160523
(
2016
).
24.
G.
De Canio
,
E.
Lauga
, and
R. E.
Goldstein
, “
Spontaneous oscillations of elastic filaments induced by molecular motors
,”
J. R. Soc. Interface
14
,
20170491
(
2017
).
25.
F.
Ling
,
H.
Guo
, and
E.
Kanso
, “
Instability-driven oscillations of elastic microfilaments
,”
J. R. Soc. Interface
15
,
20180594
(
2018
).
26.
T.
Hu
and
P. V.
Bayly
, “
Finite element models of flagella with sliding radial spokes and interdoublet links exhibit propagating waves under steady dynein loading
,”
Cytoskeleton
75
,
185
200
(
2018
).
27.
S.
Fatehiboroujeni
,
A.
Gopinath
, and
S.
Goyal
, “
Nonlinear oscillations induced by follower forces in prestressed clamped rods subjected to drag
,”
J. Comput. Nonlinear Dyn.
13
,
121005
(
2018
).
28.
B.
Chakrabarti
and
D.
Saintillan
, “
Spontaneous oscillations, beating patterns, and hydrodynamics of active microfilaments
,”
Phys. Rev. Fluids
4
,
043102
(
2019
).
29.
S. K.
Anand
,
R.
Chelakkot
, and
S. P.
Singh
, “
Beating to rotational transition of a clamped active ribbon-like filament
,”
Soft Matter
15
,
7926
7933
(
2019
).
30.
T.
Masuda
,
M.
Hidaka
,
Y.
Murase
,
A. M.
Akimoto
,
K.
Nagase
,
T.
Okano
, and
R.
Yoshida
, “
Self-oscillating polymer brushes
,”
Angew. Chem., Int. Ed.
125
,
7616
7619
(
2013
).
31.
K.
Kumar
,
C.
Knie
,
D.
Bléger
,
M. A.
Peletier
,
H.
Friedrich
,
S.
Hecht
,
D. J.
Broer
,
M. G.
Debije
, and
A. P.
Schenning
, “
A chaotic self-oscillating sunlight-driven polymer actuator
,”
Nat. Commun.
7
,
11975
(
2016
).
32.
A.
Vilfan
,
S.
Subramani
,
E.
Bodenschatz
,
R.
Golestanian
, and
I.
Guido
, “
Flagella-like beating of a single microtubule
,”
Nano Lett.
19
,
3359
3363
(
2019
).
33.
Y.
Zhao
,
C.
Xuan
,
X.
Qian
,
Y.
Alsaid
,
M.
Hua
,
L.
Jin
, and
X.
He
, “
Soft phototactic swimmer based on self-sustained hydrogel oscillator
,”
Sci. Rob.
4
,
eaax7112
(
2019
).
34.
L.
Zhu
and
H. A.
Stone
, “
Propulsion driven by self-oscillation via an electrohydrodynamic instability
,”
Phys. Rev. Fluids
4
,
061701
(
2019
).
35.
L.
Zhu
and
H. A.
Stone
, “
Harnessing elasticity to generate self-oscillation via an electrohydrodynamic instability
,”
J. Fluid Mech.
888
,
A31
(
2020
).
36.
T.
Niedermayer
,
B.
Eckhardt
, and
P.
Lenz
, “
Synchronization, phase locking, and metachronal wave formation in ciliary chains
,”
Chaos
18
,
037128
(
2008
).
37.
G. J.
Elfring
and
E.
Lauga
, “
Hydrodynamic phase locking of swimming microorganisms
,”
Phys. Rev. Lett.
103
,
088101
(
2009
).
38.
Y.
Man
,
W.
Page
,
R. J.
Poole
, and
E.
Lauga
, “
Bundling of elastic filaments induced by hydrodynamic interactions
,”
Phys. Rev. Fluids
2
,
123101
(
2017
).
39.
H.
Guo
,
L.
Fauci
,
M.
Shelley
, and
E.
Kanso
, “
Bistability in the synchronization of actuated microfilaments
,”
J. Fluid Mech.
836
,
304
323
(
2018
).
40.
R.
Elfasi
,
Y.
Elimelech
, and
A. D.
Gat
, “
Propulsion and maneuvering of an artificial microswimmer by two closely spaced waving elastic filaments
,”
Phys. Rev. Fluids
3
,
044203
(
2018
).
41.
E.
Lauga
, “
Floppy swimming: Viscous locomotion of actuated elastica
,”
Phys. Rev. E
75
,
041916
(
2007
).
42.
T. S.
Singh
,
P.
Singh
, and
R.
Yadava
, “
Effect of interfilament hydrodynamic interaction on swimming performance of two-filament microswimmers
,”
Soft Matter
14
,
7748
7758
(
2018
).
43.
H.
Shum
, “
Microswimmer propulsion by two steadily rotating helical flagella
,”
Micromachines
10
,
65
(
2019
).
44.
T. R.
Powers
, “
Dynamics of filaments and membranes in a viscous fluid
,”
Rev. Mod. Phys.
82
,
1607
(
2010
).
45.
J.
Gray
and
G. J.
Hancock
, “
The propulsion of sea-urchin spermatozoa
,”
J. Exp. Biol.
32
,
802
814
(
1955
), available at https://jeb.biologists.org/content/32/4/802.article-info.
46.
R. G.
Cox
, “
The motion of long slender bodies in a viscous fluid Part 1. General theory
,”
J. Fluid Mech.
44
,
791
810
(
1970
).
47.
L. A.
Segel
,
Mathematics Applied to Continuum Mechanics
(
SIAM
,
2007
), Vol. 52.
48.
M.
Lagomarsino
,
F.
Capuani
, and
C.
Lowe
, “
A simulation study of the dynamics of a driven filament in an Aristotelian fluid
,”
J. Theor. Biol.
224
,
215
224
(
2003
).
49.
L. J.
Fauci
and
C. S.
Peskin
, “
A computational model of aquatic animal locomotion
,”
J. Comput. Phys.
77
,
85
108
(
1988
).
50.
S. D.
Olson
and
L. J.
Fauci
, “
Hydrodynamic interactions of sheets vs filaments: Synchronization, attraction, and alignment
,”
Phys. Fluids
27
,
121901
(
2015
).
51.
R.
Cortez
, “
The method of regularized Stokeslets
,”
SIAM J. Sci. Comput.
23
,
1204
1225
(
2001
).
52.
R.
Cortez
,
L.
Fauci
, and
A.
Medovikov
, “
The method of regularized Stokeslets in three dimensions: Analysis, validation, and application to helical swimming
,”
Phys. Fluids
17
,
031504
(
2005
).
53.
J.
Martindale
,
M.
Jabbarzadeh
, and
H.
Fu
, “
Choice of computational method for swimming and pumping with nonslender helical filaments at low Reynolds number
,”
Phys. Fluids
28
,
021901
(
2016
).
54.
J. K.
Wróbel
,
R.
Cortez
,
D.
Varela
, and
L.
Fauci
, “
Regularized image system for Stokes flow outside a solid sphere
,”
J. Comput. Phys.
317
,
165
184
(
2016
).
55.
J.
Blake
, “
A note on the image system for a Stokeslet in a no-slip boundary
,” in
Mathematical Proceedings of the Cambridge Philosophical Society
(
Cambridge University Press
,
1971
), Vol. 70, pp.
303
310
.
56.
S.
Camalet
and
F.
Jülicher
, “
Generic aspects of axonemal beating
,”
New J. Phys.
2
,
24
(
2000
).
57.
Z.
Peng
,
G. J.
Elfring
, and
O. S.
Pak
, “
Maximizing propulsive thrust of a driven filament at low Reynolds number via variable flexibility
,”
Soft Matter
13
,
2339
2347
(
2017
).
58.
M. J.
Lighthill
, “
On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers
,”
Commun. Pure Appl. Math.
5
,
109
118
(
1952
).
59.
J. R.
Blake
, “
A spherical envelope approach to ciliary propulsion
,”
J. Fluid Mech.
46
,
199
208
(
1971
).
60.
T. S.
Yu
,
E.
Lauga
, and
A.
Hosoi
, “
Experimental investigations of elastic tail propulsion at low Reynolds number
,”
Phys. Fluids
18
,
091701
(
2006
).
61.
P.
Choudhary
,
S.
Mandal
, and
S. B.
Babu
, “
Locomotion of a flexible one-hinge swimmer in Stokes regime
,”
J. Phys. Commun.
2
,
025009
(
2018
).
62.
F.
Mannan
, “
Singly-periodic Stokes flow and the simulation of cilia
,” Ph.D. thesis,
Tulane University School of Science and Engineering
,
2017
.
You do not currently have access to this content.