In this article, we introduce a modular hybrid analysis and modeling (HAM) approach to account for hidden physics in reduced order modeling (ROM) of parameterized systems relevant to fluid dynamics. The hybrid ROM framework is based on using first principles to model the known physics in conjunction with utilizing the data-driven machine learning tools to model the remaining residual that is hidden in data. This framework employs proper orthogonal decomposition as a compression tool to construct orthonormal bases and a Galerkin projection (GP) as a model to build the dynamical core of the system. Our proposed methodology, hence, compensates structural or epistemic uncertainties in models and utilizes the observed data snapshots to compute true modal coefficients spanned by these bases. The GP model is then corrected at every time step with a data-driven rectification using a long short-term memory (LSTM) neural network architecture to incorporate hidden physics. A Grassmann manifold approach is also adopted for interpolating basis functions to unseen parametric conditions. The control parameter governing the system’s behavior is, thus, implicitly considered through true modal coefficients as input features to the LSTM network. The effectiveness of the HAM approach is then discussed through illustrative examples that are generated synthetically to take hidden physics into account. Our approach, thus, provides insights addressing a fundamental limitation of the physics-based models when the governing equations are incomplete to represent underlying physical processes.

1.
M.
Reichstein
,
G.
Camps-Valls
,
B.
Stevens
,
M.
Jung
,
J.
Denzler
,
N.
Carvalhais
 et al., “
Deep learning and process understanding for data-driven Earth system science
,”
Nature
566
,
195
204
(
2019
).
2.
A.
Karpatne
,
G.
Atluri
,
J. H.
Faghmous
,
M.
Steinbach
,
A.
Banerjee
,
A.
Ganguly
,
S.
Shekhar
,
N.
Samatova
, and
V.
Kumar
, “
Theory-guided data science: A new paradigm for scientific discovery from data
,”
IEEE Trans. Knowl. Data Eng.
29
,
2318
2331
(
2017
).
3.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2019
).
4.
M.
Brenner
,
J.
Eldredge
, and
J.
Freund
, “
Perspective on machine learning for advancing fluid mechanics
,”
Phys. Rev. Fluids
4
,
100501
(
2019
).
5.
A.
Rasheed
,
O.
San
, and
T.
Kvamsdal
, “
Digital twin: Values, challenges and enablers from a modeling perspective
,”
IEEE Access
8
,
21980
22012
(
2020
); arXiv:1910.01719.
6.
C. W.
Rowley
and
S. T.
Dawson
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
417
(
2017
).
7.
K.
Taira
,
M. S.
Hemati
,
S. L.
Brunton
,
Y.
Sun
,
K.
Duraisamy
,
S.
Bagheri
,
S. T.
Dawson
, and
C.-A.
Yeh
, “
Modal analysis of fluid flows: Applications and outlook
,”
AIAA J.
(to be published).
8.
V.
Puzyrev
,
M.
Ghommem
, and
S.
Meka
, “
pyROM: A computational framework for reduced order modeling
,”
J. Comput. Sci.
30
,
157
173
(
2019
).
9.
P.
Benner
,
S.
Gugercin
, and
K.
Willcox
, “
A survey of projection-based model reduction methods for parametric dynamical systems
,”
SIAM Rev.
57
,
483
531
(
2015
).
10.
J.-C.
Loiseau
,
B. R.
Noack
, and
S. L.
Brunton
, “
Sparse reduced-order modelling: Sensor-based dynamics to full-state estimation
,”
J. Fluid Mech.
844
,
459
490
(
2018
).
11.
S. W.
Fung
and
L.
Ruthotto
, “
A multiscale method for model order reduction in PDE parameter estimation
,”
J. Comput. Appl. Math.
350
,
19
34
(
2019
).
12.
T.
Lassila
and
G.
Rozza
, “
Parametric free-form shape design with PDE models and reduced basis method
,”
Comput. Methods Appl. Mech. Eng.
199
,
1583
1592
(
2010
).
13.
M.
Xiao
,
P.
Breitkopf
,
R. F.
Coelho
,
C.
Knopf-Lenoir
,
M.
Sidorkiewicz
, and
P.
Villon
, “
Model reduction by CPOD and Kriging
,”
Struct. Multidiscip. Optim.
41
,
555
574
(
2010
).
14.
M.
Bergmann
and
L.
Cordier
, “
Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models
,”
J. Comput. Phys.
227
,
7813
7840
(
2008
).
15.
B. R.
Noack
,
M.
Morzynski
, and
G.
Tadmor
,
Reduced-Order Modelling for Flow Control
(
Springer Science and Business Media
,
New York
,
2011
), Vol. 528.
16.
S. L.
Brunton
and
B. R.
Noack
, “
Closed-loop turbulence control: Progress and challenges
,”
Appl. Mech. Rev.
67
,
050801
(
2015
).
17.
K.
Willcox
, “
Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition
,”
Comput. Fluids
35
,
208
226
(
2006
).
18.
D. N.
Daescu
and
I. M.
Navon
, “
Efficiency of a POD-based reduced second-order adjoint model in 4D-Var data assimilation
,”
Int. J. Numer. Methods Fluids
53
,
985
1004
(
2007
).
19.
R.
Ştefănescu
,
A.
Sandu
, and
I. M.
Navon
, “
POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
,”
J. Comput. Phys.
295
,
569
595
(
2015
).
20.
D.
Xiao
,
J.
Du
,
F.
Fang
,
C.
Pain
, and
J.
Li
, “
Parameterised non-intrusive reduced order methods for ensemble Kalman filter data assimilation
,”
Comput. Fluids
177
,
69
77
(
2018
).
21.
S.
Guzzetti
,
L. M.
Alvarez
,
P.
Blanco
,
K. T.
Carlberg
, and
A.
Veneziani
, “
Propagating uncertainties in large-scale hemodynamics models via network uncertainty quantification and reduced-order modeling
,”
Comput. Methods Appl. Mech. Eng.
358
,
112626
(
2020
).
22.
F.
Tao
,
H.
Zhang
,
A.
Liu
, and
A. Y.
Nee
, “
Digital twin in industry: State-of-the-art
,”
IEEE Trans. Ind. Inf.
15
,
2405
2415
(
2018
).
23.
R.
Ganguli
and
S.
Adhikari
, “
The digital twin of discrete dynamic systems: Initial approaches and future challenges
,”
Appl. Math. Modell.
77
,
1110
1128
(
2020
).
24.
D.
Hartmann
,
M.
Herz
, and
U.
Wever
, “
Model order reduction a key technology for digital twins
,” in
Reduced-Order Modeling (ROM) for Simulation and Optimization
(
Springer
,
2018
), pp.
167
179
.
25.
S.
Chakraborty
,
S.
Adhikari
, and
R.
Ganguli
, “
The role of surrogate models in the development of digital twins of dynamic systems
,” arXiv:2001.09292 (
2020
).
26.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. I. Coherent structures
,”
Q. Appl. Math.
45
,
561
571
(
1987
).
27.
J. L.
Lumley
, “
The structure of inhomogeneous turbulent flows
,” in
Atmospheric Turbulence and Radio Wave Propagation
, edited by
A. M.
Yaglom
and
V. I.
Tatarsky
(
Nauka, Moscow
,
1967
), pp.
166
176
.
28.
M.
Sieber
,
C. O.
Paschereit
, and
K.
Oberleithner
, “
Spectral proper orthogonal decomposition
,”
J. Fluid Mech.
792
,
798
828
(
2016
).
29.
M.
Mendez
,
M.
Balabane
, and
J.-M.
Buchlin
, “
Multi-scale proper orthogonal decomposition of complex fluid flows
,”
J. Fluid Mech.
870
,
988
1036
(
2019
).
30.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
31.
H.
Arbabi
and
I.
Mezic
, “
Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator
,”
SIAM J. Appl. Dyn. Syst.
16
,
2096
2126
(
2017
).
32.
M. S.
Hemati
,
C. W.
Rowley
,
E. A.
Deem
, and
L. N.
Cattafesta
, “
De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets
,”
Theor. Comput. Fluid Dyn.
31
,
349
368
(
2017
).
33.
D.
DeMers
and
G. W.
Cottrell
, “
Non-linear dimensionality reduction
,” in
Advances in Neural Information Processing Systems
(
Morgan-Kaufmann
,
1993
), pp.
580
587
.
34.
G. E.
Hinton
and
R. R.
Salakhutdinov
, “
Reducing the dimensionality of data with neural networks
,”
Science
313
,
504
507
(
2006
).
35.
F. J.
Gonzalez
and
M.
Balajewicz
, “
Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems
,” arXiv:1808.01346 (
2018
).
36.
K.
Lee
and
K.
Carlberg
, “
Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
,”
J. Comput. Phys.
404
,
108973
(
2020
).
37.
S. E.
Otto
and
C. W.
Rowley
, “
Linearly recurrent autoencoder networks for learning dynamics
,”
SIAM J. Appl. Dyn. Syst.
18
,
558
593
(
2019
).
38.
D.
Rempfer
, “
On low-dimensional Galerkin models for fluid flow
,”
Theor. Comput. Fluid Dyn.
14
,
75
88
(
2000
).
39.
C. W.
Rowley
,
T.
Colonius
, and
R. M.
Murray
, “
Model reduction for compressible flows using POD and Galerkin projection
,”
Physica D
189
,
115
129
(
2004
).
40.
I.
Akhtar
,
A. H.
Nayfeh
, and
C. J.
Ribbens
, “
On the stability and extension of reduced-order Galerkin models in incompressible flows
,”
Theor. Comput. Fluid Dyn.
23
,
213
237
(
2009
).
41.
J.
Borggaard
,
T.
Iliescu
, and
Z.
Wang
, “
Artificial viscosity proper orthogonal decomposition
,”
Math. Comput. Modell.
53
,
269
279
(
2011
).
42.
Z.
Wang
,
I.
Akhtar
,
J.
Borggaard
, and
T.
Iliescu
, “
Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison
,”
Comput. Methods Appl. Mech. Eng.
237
,
10
26
(
2012
).
43.
L.
Cordier
,
B. R.
Noack
,
G.
Tissot
,
G.
Lehnasch
,
J.
Delville
,
M.
Balajewicz
,
G.
Daviller
, and
R. K.
Niven
, “
Identification strategies for model-based control
,”
Exp. Fluids
54
,
1580
(
2013
).
44.
O.
San
and
T.
Iliescu
, “
Proper orthogonal decomposition closure models for fluid flows: Burgers equation
,”
Int. J. Numer. Anal. Model., Ser. B
5
,
217
237
(
2014
).
45.
S.
Grimberg
,
C.
Farhat
, and
N.
Youkilis
, “
On the stability of projection-based model order reduction for convection-dominated laminar and turbulent flows
,” arXiv:2001.10110 (
2020
).
46.
V. M.
Krasnopolsky
and
M. S.
Fox-Rabinovitz
, “
Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction
,”
Neural Networks
19
,
122
134
(
2006
).
47.
J.
Yu
,
C.
Yan
, and
M.
Guo
, “
Non-intrusive reduced-order modeling for fluid problems: A brief review
,”
Proc. Inst. Mech. Eng., Part G
233
,
5896
5912
(
2019
).
48.
S. M.
Rahman
,
S.
Pawar
,
O.
San
,
A.
Rasheed
, and
T.
Iliescu
, “
Nonintrusive reduced order modeling framework for quasigeostrophic turbulence
,”
Phys. Rev. E
100
,
053306
(
2019
).
49.
S. E.
Ahmed
,
S.
Rahman
,
O.
San
,
A.
Rasheed
, and
I. M.
Navon
, “
Memory embedded non-intrusive reduced order modeling of non-ergodic flows
,”
Phys. Fluids
31
(
12
),
126602
(
2019
).
50.
D.
Xiao
,
F.
Fang
,
C.
Heaney
,
I.
Navon
, and
C.
Pain
, “
A domain decomposition method for the non-intrusive reduced order modelling of fluid flow
,”
Comput. Methods Appl. Mech. Eng.
354
,
307
330
(
2019
).
51.
D.
Xiao
,
C.
Heaney
,
L.
Mottet
,
F.
Fang
,
W.
Lin
,
I.
Navon
,
Y.
Guo
,
O.
Matar
,
A.
Robins
, and
C.
Pain
, “
A reduced order model for turbulent flows in the urban environment using machine learning
,”
Build. Environ.
148
,
323
337
(
2019
).
52.
R.
Swischuk
,
L.
Mainini
,
B.
Peherstorfer
, and
K.
Willcox
, “
Projection-based model reduction: Formulations for physics-based machine learning
,”
Comput. Fluids
179
,
704
717
(
2019
).
53.
D.
Xiao
, “
Error estimation of the parametric non-intrusive reduced order model using machine learning
,”
Comput. Methods Appl. Mech. Eng.
355
,
513
534
(
2019
).
54.
T.
Murata
,
K.
Fukami
, and
K.
Fukagata
, “
Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
,”
J. Fluid Mech.
882
,
A13
(
2020
).
55.
M.
Guo
and
J. S.
Hesthaven
, “
Reduced order modeling for nonlinear structural analysis using Gaussian process regression
,”
Comput. Methods Appl. Mech. Eng.
341
,
807
826
(
2018
).
56.
K.
Li
,
J.
Kou
, and
W.
Zhang
, “
Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple mach numbers
,”
Nonlinear Dyn.
96
,
2157
2177
(
2019
).
57.
R.
Maulik
,
B.
Lusch
, and
P.
Balaprakash
, “
Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
,” arXiv:2002.00470 (
2020
).
58.
M.
Schmidt
and
H.
Lipson
, “
Distilling free-form natural laws from experimental data
,”
Science
324
,
81
85
(
2009
).
59.
A. J.
Majda
,
C.
Franzke
, and
D.
Crommelin
, “
Normal forms for reduced stochastic climate models
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
3649
3653
(
2009
).
60.
S. H.
Rudy
,
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Data-driven discovery of partial differential equations
,”
Sci. Adv.
3
,
e1602614
(
2017
).
61.
Z.
Long
,
Y.
Lu
, and
B.
Dong
, “
PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network
,”
J. Comput. Phys.
399
,
108925
(
2019
).
62.
J.
Rabault
,
M.
Kuchta
,
A.
Jensen
,
U.
Réglade
, and
N.
Cerardi
, “
Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control
,”
J. Fluid Mech.
865
,
281
302
(
2019
).
63.
R.
Iten
,
T.
Metger
,
H.
Wilming
,
L.
Del Rio
, and
R.
Renner
, “
Discovering physical concepts with neural networks
,”
Phys. Rev. Lett.
124
,
010508
(
2020
).
64.
M.
Raissi
and
G. E.
Karniadakis
, “
Hidden physics models: Machine learning of nonlinear partial differential equations
,”
J. Comput. Phys.
357
,
125
141
(
2018
).
65.
H.
Vaddireddy
,
A.
Rasheed
,
A. E.
Staples
, and
O.
San
, “
Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data
,”
Phys. Fluids
32
,
015113
(
2020
).
66.
J.
Kou
and
W.
Zhang
, “
Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils
,”
Appl. Math. Modell.
76
,
832
855
(
2019
).
67.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
68.
M.
Bode
,
M.
Gauding
,
Z.
Lian
,
D.
Denker
,
M.
Davidovic
,
K.
Kleinheinz
,
J.
Jitsev
, and
H.
Pitsch
, “
Using physics-informed super-resolution generative adversarial networks for subgrid modeling in turbulent reactive flows
,” arXiv:1911.11380 (
2019
).
69.
J.
Ling
,
A.
Kurzawski
, and
J.
Templeton
, “
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
,”
J. Fluid Mech.
807
,
155
166
(
2016
).
70.
T.
Beucler
,
M.
Pritchard
,
S.
Rasp
,
P.
Gentine
,
J.
Ott
, and
P.
Baldi
, “
Enforcing analytic constraints in neural-networks emulating physical systems
,” arXiv:1909.00912 (
2019
).
71.
O.
San
and
R.
Maulik
, “
Neural network closures for nonlinear model order reduction
,”
Adv. Comput. Math.
44
,
1717
1750
(
2018
).
72.
R.
Ibáñez
,
E.
Abisset-Chavanne
,
D.
González
,
J.-L.
Duval
,
E.
Cueto
, and
F.
Chinesta
, “
Hybrid constitutive modeling: Data-driven learning of corrections to plasticity models
,”
Int. J. Mater. Form.
12
,
717
725
(
2019
).
73.
S.
Pan
and
K.
Duraisamy
, “
Physics-informed probabilistic learning of linear embeddings of non-linear dynamics with guaranteed stability
,”
SIAM J. Appl. Dyn. Syst.
19
(
1
),
480
509
(
2020
).
74.
C.
Mou
,
H.
Liu
,
D. R.
Wells
, and
T.
Iliescu
, “
Data-driven correction reduced order models for the quasi-geostrophic equations: A numerical investigation
,”
Int. J. Comput. Fluid Dyn.
1
13
(
2020
).
75.
N.
Muralidhar
,
J.
Bu
,
Z.
Cao
,
L.
He
,
N.
Ramakrishnan
,
D.
Tafti
, and
A.
Karpatne
, “
Physics-guided design and learning of neural networks for predicting drag force on particle suspensions in moving fluids
,” arXiv:1911.04240 (
2019
).
76.
O.
San
,
R.
Maulik
, and
M.
Ahmed
, “
An artificial neural network framework for reduced order modeling of transient flows
,”
Commun. Nonlinear Sci. Numer. Simul.
77
,
271
287
(
2019
).
77.
Z. Y.
Wan
,
P.
Vlachas
,
P.
Koumoutsakos
, and
T.
Sapsis
, “
Data-assisted reduced-order modeling of extreme events in complex dynamical systems
,”
PLoS One
13
,
e0197704
(
2018
).
78.
Z.
Wang
,
D.
Xiao
,
F.
Fang
,
R.
Govindan
,
C. C.
Pain
, and
Y.
Guo
, “
Model identification of reduced order fluid dynamics systems using deep learning
,”
Int. J. Numer. Methods Fluids
86
,
255
268
(
2018
).
79.
T.
Lassila
,
A.
Manzoni
,
A.
Quarteroni
, and
G.
Rozza
, “
Model order reduction in fluid dynamics: Challenges and perspectives
,” in
Reduced Order Methods for Modeling and Computational Reduction
(
Springer
,
2014
), pp.
235
273
.
80.
D.
Amsallem
and
C.
Farhat
, “
Interpolation method for adapting reduced-order models and application to aeroelasticity
,”
AIAA J.
46
,
1803
1813
(
2008
).
81.
R.
Zimmermann
,
B.
Peherstorfer
, and
K.
Willcox
, “
Geometric subspace updates with applications to online adaptive nonlinear model reduction
,”
SIAM J. Matrix Anal. Appl.
39
,
234
261
(
2018
).
82.
N. B.
Erichson
,
L.
Mathelin
,
Z.
Yao
,
S. L.
Brunton
,
M. W.
Mahoney
, and
J. N.
Kutz
, “
Shallow learning for fluid flow reconstruction with limited sensors and limited data
,” arXiv:1902.07358 (
2019
).
83.
O.
San
,
A. E.
Staples
, and
T.
Iliescu
, “
Approximate deconvolution large eddy simulation of a stratified two-layer quasigeostrophic ocean model
,”
Ocean Modell.
63
,
1
20
(
2013
).
84.
O.
San
and
A. E.
Staples
, “
An efficient coarse grid projection method for quasigeostrophic models of large-scale ocean circulation
,”
Int. J. Multiscale Comput. Eng.
11
,
463
495
(
2013
).
85.
S.
Pawar
,
S.
Rahman
,
H.
Vaddireddy
,
O.
San
,
A.
Rasheed
, and
P.
Vedula
, “
A deep learning enabler for nonintrusive reduced order modeling of fluid flows
,”
Phys. Fluids
31
,
085101
(
2019
).
86.
M.
Mohebujjaman
,
L. G.
Rebholz
, and
T.
Iliescu
, “
Physically constrained data-driven correction for reduced-order modeling of fluid flows
,”
Int. J. Numer. Methods Fluids
89
,
103
122
(
2019
).
You do not currently have access to this content.