The reduction in aerodynamic drag by injecting a gaseous jet from the nose of a blunt body into a supersonic stream is investigated numerically. The penetration of the jet into the supersonic flow modifies the shock structure around the body and creates a low pressure recirculation zone, thereby decreasing the wave drag significantly. Combining various theoretical estimates of different flow features and numerical simulations, we identify a universal parameter, called the jet to freestream momentum ratio (RmA), which uniquely governs the drag on the blunt body. The momentum ratio fundamentally decides the penetration of the jet as well as the extent of low pressure envelope around the body. In addition, various influencing parameters reported in the literature are reviewed for different steady jet flow conditions. Furthermore, their limitations in regulating the flowfield are explained by correlating the facts with the jet to freestream momentum ratio. We perform the simulations for various combinations of physical and flow parameters of the jet and the freestream to show a universal dependence of drag on the momentum ratio.

1.
D.
Furukawa
,
Y.
Aoki
,
A.
Iwakawa
, and
A.
Sasoh
, “
Moderation of near-field pressure over a supersonic flight model using laser-pulse energy deposition
,”
Phys. Fluids
28
,
051701
(
2016
).
2.
J.
Sinclair
and
X.
Cui
, “
A theoretical approximation of the shock standoff distance for supersonic flows around a circular cylinder
,”
Phys. Fluids
29
,
026102
(
2017
).
3.
O.
Tumuklu
,
D. A.
Levin
, and
V.
Theofilis
, “
Investigation of unsteady, hypersonic, laminar separated flows over a double cone geometry using a kinetic approach
,”
Phys. Fluids
30
,
046103
(
2018
).
4.
W.
Si
,
G.
Huang
,
Y.
Zhu
,
S.
Chen
, and
C.
Lee
, “
Hypersonic aerodynamic heating over a flared cone with wavy wall
,”
Phys. Fluids
31
,
051702
(
2019
).
5.
B.
Sudarshan
,
S.
Deep
,
V.
Jayaram
,
G.
Jagadeesh
, and
S.
Saravanan
, “
Experimental study of forward-facing cavity with energy deposition in hypersonic flow conditions
,”
Phys. Fluids
31
,
106105
(
2019
).
6.
E.
Josyula
,
M.
Pinney
, and
W. B.
Blake
, “
Applications of a counterflow drag reduction technique in high-speed systems
,”
J. Spacecr. Rockets
39
,
605
614
(
2002
).
7.
A.
Zheltovodov
,
E.
Pimonov
, and
D.
Knight
, “
Energy deposition influence on supersonic flow over axisymmetric bodies
,” in
45th AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
2007
).
8.
K.
Satheesh
and
G.
Jagadeesh
, “
Effect of concentrated energy deposition on the aerodynamic drag of a blunt body in hypersonic flow
,”
Phys. Fluids
19
,
031701
(
2007
).
9.
Y.
Ogino
,
N.
Ohnishi
,
S.
Taguchi
, and
K.
Sawada
, “
Baroclinic vortex influence on wave drag reduction induced by pulse energy deposition
,”
Phys. Fluids
21
,
066102
(
2009
).
10.
J.-H.
Kim
,
A.
Matsuda
, and
A.
Sasoh
, “
Interactions among baroclinically-generated vortex rings in building up an acting spike to a bow shock layer
,”
Phys. Fluids
23
,
021703
(
2011
).
11.
S.
Desai
,
V.
Kulkarni
,
H.
Gadgil
, and
B.
John
, “
Aerothermodynamic considerations for energy deposition based drag reduction technique
,”
Appl. Therm. Eng.
122
,
451
460
(
2017
).
12.
D. R.
Gutiérrez
and
J.
Poggie
, “
Effects of power deposition on the aerodynamic forces on a slender body
,”
AIAA J.
56
,
2911
2917
(
2018
).
13.
D. J.
Maull
, “
Hypersonic flow over axially symmetric spiked bodies
,”
J. Fluid Mech.
8
,
584
592
(
1960
).
14.
V.
Menezes
,
S.
Kumar
,
K.
Maruta
,
K. P. J.
Reddy
, and
K.
Takayama
, “
Hypersonic flow over a multi-step afterbody
,”
Shock Waves
14
,
421
424
(
2005
).
15.
C. H. E.
Warren
, “
An experimental investigation of the effect of ejecting a coolant gas at the nose of a bluff body
,”
J. Fluid Mech.
8
,
400
417
(
1960
).
16.
P. J.
Finley
, “
The flow of a jet from a body opposing a supersonic free stream
,”
J. Fluid Mech.
26
,
337
368
(
1966
).
17.
L. W.
Chen
,
G. L.
Wang
, and
X. Y.
Lu
, “
Numerical investigation of a jet from a blunt body opposing a supersonic flow
,”
J. Fluid Mech.
684
,
85
110
(
2011
).
18.
J. S.
Shang
, “
Plasma injection for hypersonic blunt-body drag reduction
,”
AIAA J.
40
,
1178
1186
(
2002
).
19.
B.
Venukumar
,
G.
Jagadeesh
, and
K. P. J.
Reddy
, “
Counterflow drag reduction by supersonic jet for a blunt body in hypersonic flow
,”
Phys. Fluids
18
,
118104
(
2006
).
20.
V.
Kulkarni
and
K. P. J.
Reddy
, “
Enhancement in counterflow drag reduction by supersonic jet in high enthalpy flows
,”
Phys. Fluids
20
,
016103
(
2008
).
21.
N.
Sahoo
,
V.
Kulkarni
,
S.
Saravanan
,
G.
Jagadeesh
, and
K. P. J.
Reddy
, “
Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed
,”
Phys. Fluids
17
,
036102
(
2005
).
22.
I.
Tamada
,
S.
Aso
, and
Y.
Tani
, “
Reducing aerodynamic heating by the opposing jet in supersonic and hypersonic flows
,” in
48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
AIAA
,
2010
).
23.
R.
Yisheng
, “
Drag reduction research in supersonic flow with opposing jet
,”
Acta Astronaut.
91
,
1
7
(
2013
).
24.
M.
Fujita
, “
Axisymmetric oscillations of an opposing jet from a hemispherical nose
,”
AIAA J.
33
,
1850
1856
(
1995
).
25.
M.
Fujita
and
K.
Karashima
, “
An experimental and computational study on self-excited oscillations in supersonic opposing jet flow
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
8
,
112
119
(
1999
).
26.
J. F.
Debiéve
,
J. P.
Ardissone
, and
J. P.
Dussauge
, “
Shock motion and state of turbulence in a perturbed supersonic flow around a sphere
,”
J. Turbul.
4
,
N26
(
2003
).
27.
P. L.
Owen
and
C. K.
Thornhill
, “
The flow in an axially-symmetric supersonic jet from a nearly-sonic orifice into a vacuum
,” Reports and Memoranda No. 2616,
Aeronautical Research Council
,
1952
.
28.
E. S.
Love
,
C. E.
Rigsby
,
L. P.
Lee
, and
M. J.
Woodling
, “
Experimental and theoretical studies of axisymmetric free jets
,” NASA TR, No. R-6,
1959
.
29.
E. S.
Love
, “
A re-examination of the use of simple concepts for predicting the shape and location of detached shock waves
,” NACA TN, No. 4170,
1957
.
30.
S.
Desai
,
V.
Kulkarni
, and
H.
Gadgil
, “
Delusive influence of nondimensional numbers in canonical hypersonic nonequilibrium flows
,”
J. Aerosp. Eng.
29
,
04016030
(
2016
).
31.
S.
Agarwal
,
N.
Sahoo
,
K. J.
Irimpan
,
V.
Menezes
, and
S.
Desai
, “
Comparative performance assessments of surface junction probes for stagnation heat flux estimation in a hypersonic shock tunnel
,”
Int. J. Heat Mass Transfer
114
,
748
757
(
2017
).
32.
S.
Desai
,
V.
Kulkarni
, and
H.
Gadgil
, “
Separation mitigation using pressure feedback technique for hypersonic shock wave boundary layer interaction
,”
Proc. Inst. Mech. Eng., Part G
233
,
3519
3533
(
2019
).
33.
D.
Das
,
S.
Desai
,
V.
Kulkarni
, and
H.
Gadgil
, “
Performance assessment of energy deposition based drag reduction technique for earth and mars flight conditions
,”
Acta Astronaut.
159
,
418
428
(
2019
).
34.
S.
Desai
,
S.
Brahmachary
,
H.
Gadgil
, and
V.
Kulkarni
, “
Probing real gas and leading-edge bluntness effects on shock wave boundary-layer interaction at hypersonic speeds
,”
J. Aerosp. Eng.
32
,
04019089
(
2019
).
35.
M.-S.
Liou
and
C. J.
Steffen
, “
A new flux splitting scheme
,”
J. Comput. Phys.
107
,
23
39
(
1993
).
36.
J.
Blazek
,
Computational Fluid Dynamics: Principles and Applications
(
Elsevier
,
Switzerland
,
2001
).
37.
V.
Venkatakrishnan
, “
On the accuracy of limiters and convergence to steady state solutions
,” AIAA Paper No. 93-0880,
1993
.
38.
S.
Gordon
and
B. J.
McBride
, “
Computer program for calculation of complex chemical equilibrium composition and applications
,” NASA, No. 1331,
1994
.
39.
M. G.
Dunn
and
S. W.
Kang
, “
Theoretical and experimental studies of reentry plasmas
,” NASA CR, No. 2232,
1973
.
40.
E. S. G.
Maciel
and
A. P.
Pimenta
, “
Thermochemical non-equilibrium entry flows in mars in two-dimensions—I
,”
WSEAS Trans. Appl. Theor. Mech.
8
,
26
54
(
2013
).
41.
K.
Karashima
and
K.
Sato
, “
An experimental study of an opposing jet
,”
Bull. Inst. Space Aeronaut. Sci. Univ. Tokyo
11
,
53
64
(
1975
).
42.
Z.
Wang
,
L.
Bao
, and
B.
Tong
, “
Rarefaction criterion and non-Fourier heat transfer in hypersonic rarefied flows
,”
Phys. Fluids
22
,
126103
(
2010
).
You do not currently have access to this content.