In this study, the high-resolution numerical simulations of the two-dimensional (2D) multi-component inert and reactive highly underexpanded jets are conducted to quantify the influences of the injected gas mixture properties on the flow structure. First, the gas mixture with the specified species mass fractions is imposed to exhaust into the quiescent air with a Mach number of 1.0, of which the specific heat ratios (γe) range from 1.3 to 1.6. Our results indicate that the larger γe yields a relatively shorter and thinner jet core under the same inlet pressure ratio due to the sound speed increasing. Next, we focus on the chemical reaction effects on the jets with a premixed hydrogen–air mixture injection. The results reveal that the shock-induced combustion develops into a detonation, inducing numerous vortices behind the combustion wave, while the combustion in the mixing layer cannot be preserved due to the instability of the supersonic shearing. During the detonation process, the increasing pressure accompanied by the heat release forces the Riemann wave to move upstream compared with the inert one. The violent detonation periodically propagates between the two jet triple points. The detonation collision leads to the intersection of their slip lines, which causes distinct vortex formation. In addition, the main frequencies, corresponding to the Riemann wave movement, the oscillation of the shock-induced ignition positions, the periodical propagation of the detonation, and the collision of the detonation triple points, are explored to explain the unsteady process of the reactive highly underexpanded jet.

1.
E.
Franquet
,
V.
Perrier
,
S.
Gibout
, and
P.
Bruel
, “
Free underexpanded jets in a quiescent medium: A review
,”
Prog. Aerosp. Sci.
77
,
25
53
(
2015
).
2.
P. A.
Kumar
,
S. A.
Kumar
,
A. S.
Mitra
, and
E.
Rathakrishnan
, “
Fluidic injectors for supersonic jet control
,”
Phys. Fluids
30
,
126101
(
2018
).
3.
P.
Arun Kumar
,
S.
Aravindh Kumar
,
A.
Surya Mitra
, and
E.
Rathakrishnan
, “
Empirical scaling analysis of supersonic jet control using steady fluidic injection
,”
Phys. Fluids
31
,
056107
(
2019
).
4.
P.
Arun Kumar
,
M.
Aileni
, and
E.
Rathakrishnan
, “
Impact of tab location relative to the nozzle exit on the shock structure of a supersonic jet
,”
Phys. Fluids
31
,
076104
(
2019
).
5.
D.
Carlson
and
C.
Lewis
, “
Normal shock location in underexpanded gas and gas-particle jets
,”
AIAA J.
2
,
776
777
(
1964
).
6.
R. T.
Driftmyer
, “
A correlation of freejet data
,”
AIAA J.
10
,
1093
1095
(
1972
).
7.
Y. P.
Finat’ev
,
L.
Shcherbakov
, and
N.
Gorskaya
, “
Mach number distribution over the axis of supersonic underexpanded jets
,”
J. Eng. Phys.
15
,
1153
1157
(
1968
).
8.
M.
Banholzer
,
W.
Vera-Tudela
,
C.
Traxinger
,
M.
Pfitzner
,
Y.
Wright
, and
K.
Boulouchos
, “
Numerical investigation of the flow characteristics of underexpanded methane jets
,”
Phys. Fluids
31
,
056105
(
2019
).
9.
X.
Li
,
K.
Wu
,
W.
Yao
, and
X.
Fan
, “
A comparative study of highly underexpanded nitrogen and hydrogen jets using large eddy simulation
,”
Int. J. Hydrogen Energy
41
,
5151
5161
(
2016
).
10.
A.
Hamzehloo
and
P.
Aleiferis
, “
Gas dynamics and flow characteristics of highly turbulent under-expanded hydrogen and methane jets under various nozzle pressure ratios and ambient pressures
,”
Int. J. Hydrogen Energy
41
,
6544
6566
(
2016
).
11.
R.
Buttay
,
G.
Lehnasch
, and
A.
Mura
, “
Turbulent mixing and molecular transport in highly under-expanded hydrogen jets
,”
Int. J. Hydrogen Energy
43
,
8488
8505
(
2018
).
12.
V. V.
Golub
,
D. I.
Baklanov
,
S. V.
Golovastov
,
M. F.
Ivanov
,
I. N.
Laskin
,
A. S.
Saveliev
,
N. V.
Semin
, and
V. V.
Volodin
, “
Mechanisms of high-pressure hydrogen gas self-ignition in tubes
,”
J. Loss Prev. Process Ind.
21
,
185
198
(
2008
).
13.
B. J.
Lee
and
I. S.
Jeung
, “
Numerical study of spontaneous ignition of pressurized hydrogen released by the failure of a rupture disk into a tube
,”
Int. J. Hydrogen Energy
34
,
8763
8769
(
2009
).
14.
H. J.
Lee
,
Y. R.
Kim
,
S. H.
Kim
, and
I. S.
Jeung
, “
Experimental investigation on the self-ignition of pressurized hydrogen released by the failure of a rupture disk through tubes
,”
Proc. Combust. Inst.
33
,
2351
2358
(
2011
).
15.
G.
Lacaze
,
B.
Cuenot
,
T.
Poinsot
, and
M.
Oschwald
, “
Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration
,”
Combust. Flame
156
,
1166
1180
(
2009
).
16.
M. V.
Bragin
and
V. V.
Molkov
, “
Physics of spontaneous ignition of high-pressure hydrogen release and transition to jet fire
,”
Int. J. Hydrogen Energy
36
,
2589
2596
(
2011
).
17.
J.
Wen
,
B.
Xu
, and
V.
Tam
, “
Numerical study on spontaneous ignition of pressurized hydrogen release through a length of tube
,”
Combust. Flame
156
,
2173
2189
(
2009
).
18.
B.
Xu
and
J.
Wen
, “
Numerical study of spontaneous ignition in pressurized hydrogen release through a length of tube with local contraction
,”
Int. J. Hydrogen Energy
37
,
17571
17579
(
2012
).
19.
B.
Xu
,
J.
Wen
,
S.
Dembele
,
V.
Tam
, and
S.
Hawksworth
, “
The effect of pressure boundary rupture rate on spontaneous ignition of pressurized hydrogen release
,”
J. Loss Prev. Process Ind.
22
,
279
287
(
2009
).
20.
P. J.
Martínez Ferrer
,
R.
Buttay
,
G.
Lehnasch
, and
A.
Mura
, “
A detailed verification procedure for compressible reactive multicomponent Navier-Stokes solvers
,”
Comput. Fluids
89
,
88
110
(
2014
).
21.
R.
Buttay
,
L.
Gomet
,
G.
Lehnasch
, and
A.
Mura
, “
Highly resolved numerical simulation of combustion downstream of a rocket engine igniter
,”
Shock Waves
27
,
655
674
(
2017
).
22.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenonmena
(
John Wiley and Sons
,
2002
).
23.
M.
Ó Conaire
,
H. J.
Curran
,
J. M.
Simmie
,
W. J.
Pitz
, and
C. K.
Westbrook
, “
A comprehensive modeling study of hydrogen oxidation: A comprehensive modeling study of hydrogen oxidation
,”
Int. J. Chem. Kinet.
36
,
603
622
(
2004
).
24.
C.-W.
Shu
, “
Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws
,” in
Advanced Numerical Approximation of Nonlinear Hyperbolic Equations
(
Springer
,
1998
), pp.
325
432
.
25.
B.
Merriman
, “
Understanding the Shu-Osher conservative finite difference form
,”
J. Sci. Comput.
19
,
309
322
(
2003
).
26.
S.
Gottlieb
and
C.-W.
Shu
, “
Total variation diminishing Runge-Kutta schemes
,”
Math. Comput. Am. Math. Soc.
67
,
73
85
(
1998
).
27.
J. C.
Strikwerda
,
Finite Difference Schemes and Partial Differential Equations
(
Society for Industrial and Applied Mathematics
,
2004
).
28.
R. P.
Fedkiw
,
B.
Merriman
, and
S.
Osher
, “
High accuracy numerical methods for thermally perfect gas flows with chemistry
,”
J. Comput. Phys.
132
,
175
190
(
1997
).
29.
P. N.
Brown
,
G. D.
Byrne
, and
A. C.
Hindmarsh
, “
VODE: A variable-coefficient ODE solver
,”
SIAM J. Sci. Stat. Comput.
10
,
1038
1051
(
1989
).
30.
D. H.
Rudy
and
J. C.
Strikwerda
, “
A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations
,”
J. Comput. Phys.
36
,
55
70
(
1980
).
31.
T. J.
Poinsot
and
S. K.
Lelef
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
129
(
1992
).
32.
B.
Wasistho
,
B. J.
Geurts
, and
J. G.
Kuerten
, “
Simulation techniques for spatially evolving instabilities in compressible flow over a flat plate
,”
Comput. Fluids
26
,
713
739
(
1997
).
33.
D. S.
Dosanjh
and
W. J.
Sheeran
, “
Observations on jet flows from a two-dimensional, underexpanded, sonic nozzle
,”
AIAA J.
6
,
540
542
(
1968
).
34.
R. T.
Driftmyer
,
D. G.
Shaffer
, and
M. J.
Werle
, “
On freejet terminal shocks
,”
AIAA J.
8
,
2295
2297
(
1970
).
35.
J.
Liu
,
J.
Cai
,
D.
Yang
, and
X.
Wang
, “
A numerical visualization technique based on the hydraulic analogy
,”
J. Visualization
22
,
371
384
(
2019
).
36.
E.
Mastorakos
,
T.
Baritaud
, and
T.
Poinsot
, “
Numerical simulations of autoignition in turbulent mixing flows
,”
Combust. Flame
109
,
198
223
(
1997
).
37.
T.
Echekki
and
J. H.
Chen
, “
Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures
,”
Combust. Flame
134
,
169
191
(
2003
).
38.
P.
Boivin
,
C.
Jiménez
,
A. L.
Sánchez
, and
F. A.
Williams
, “
An explicit reduced mechanism for H2–air combustion
,”
Proc. Combust. Inst.
33
,
517
523
(
2011
).
39.
G. A.
Sod
, “
A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws
,”
J. Comput. Phys.
27
,
1
31
(
1978
).
40.
R.
Vicquelin
,
B.
Fiorina
,
S.
Payet
,
N.
Darabiha
, and
O.
Gicquel
, “
Coupling tabulated chemistry with compressible CFD solvers
,”
Proc. Combust. Inst.
33
,
1481
1488
(
2011
).
You do not currently have access to this content.