Two-dimensional mapping of the velocity distribution for a hypersonic leading-edge separation flowfield generated by a “tick” shaped geometry is presented for the first time. Discrete measurements of two velocity components were acquired at a flow condition having a total specific enthalpy of 3.8 MJ/kg by imaging nitric oxide fluorescence over numerous runs of the hypersonic tunnel at the Australian Defence Force Academy (T-ADFA). The measured freestream velocity distribution exhibited some non-uniformity, which is hypothesized to originate from images acquired using a set of ultraviolet specific mirrors mounted on the shock tunnel deflecting under load during a run of the facility, slightly changing the laser sheet orientation. The flow separation point was measured to occur at 1.4 ± 0.2 mm from the model leading edge, based on the origin of the free shear layer emanating from the expansion surface. Reattachment of this free shear layer on the compression surface occurred at 59.0 ± 0.2 mm from the model vertex. Recirculating the flow bound by the separation and reattachment points contained supersonic reverse flow and areas of subsonic flow aligned with the location of three identified counter-rotating vortices. A comparison of the recirculation flow streamline plots with those computed using Navier–Stokes and direct simulation Monte Carlo (DSMC) codes showed differences in flow structures. At a flow time close to that produced by the facility, flow structures generated by the DSMC solution were seen to agree more favorably with the experiment than those generated by the Navier–Stokes solver due to its ability to better characterize separation by modeling the strong viscous interactions and rarefaction at the leading edge. The primary reason for this is that the no-slip condition used in the Navier–Stokes solution predicts a closer separation point to the leading edge and structures when compared to the DSMC solution, which affects surface shear stress and heat flux, leading to a difference in flow structures downstream of the separation.

1.
N.
Deepak
,
S.
Gai
, and
A.
Neely
, “
High-enthalpy flow over a rearward-facing step—A computational study
,”
J. Fluid Mech.
695
,
405
438
(
2012
).
2.
A.
Chpoun
, “
Hypersonic transitional flow in a compression corner in 2D configuration
,” in
Laminar-Turbulent Transition
(
Springer
,
1990
), pp.
533
543
.
3.
C. F.
Dewey
, “
Near wake of a blunt body at hypersonic speeds
,”
AIAA J.
3
,
1001
1010
(
1965
).
4.
D.
Chapman
,
D.
Kuehn
, and
H.
Larson
, “
Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition
,” NACA Report 1356,
1958
.
5.
T.
Kaseman
,
L.
Le Page
,
S.
O’Byrne
,
H.
Kleine
, and
S.
Gai
, “
Comparison of density-sensitive and fluorescence visualization in low-density separated flow
,”
AIP Conf. Proc.
1786
,
060001
(
2016
).
6.
T. P.
Kaseman
,
L. M.
Le Page
,
S. B.
O’Byrne
, and
S. L.
Gai
, “
Visualization and thermometry in hypersonic wedge and leading-edge separated flows
,” in
55th AIAA Aerospace Sciences Meeting
(
AIAA
,
2017
), p.
0443
.
7.
B.
Melcher
,
R.
Taylor
, and
W.
Washburn
, “
Studies of the luminous hypersonic wake
,”
AIAA J.
2
,
1731
1738
(
1964
).
8.
R.
Slattery
and
W.
Clay
, “
Measurement of turbulent transition, motion, statistics, and gross radial growth behind hypervelocity objects
,”
Phys. Fluids
5
,
849
855
(
1962
).
9.
P. M.
Danehy
,
P.
Mere
,
M. J.
Gaston
,
S.
O’Byrne
,
P. C.
Palma
, and
A. F. P.
Houwing
, “
Fluorescence velocimetry of the hypersonic, separated flow over a cone
,”
AIAA J.
39
,
1320
1328
(
2001
).
10.
E.
Cecil
and
J.
McDaniel
, “
Planar velocity and temperature measurements in rarefied hypersonic flow using iodine LIF
,” in
38th AIAA Thermophysics Conference
(
AIAA
,
2005
), p.
4695
.
11.
B.
Hiller
and
R. K.
Hanson
, “
Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence
,”
Appl. Opt.
27
,
33
48
(
1988
).
12.
R.
Hruschka
,
S.
O’Byrne
, and
H.
Kleine
, “
Two-component Doppler-shift fluorescence velocimetry applied to a generic planetary entry probe model
,”
Exp. Fluids
48
,
1109
1120
(
2010
).
13.
R.
Cattolica
and
S.
Vosen
, “
Two-dimensional measurements of the [OH] in a constant volume combustion chamber
,”
Symp. (Int.) Combust.
20
,
1273
1282
(
1985
), Twentieth Symposium (International) on Combustion.
14.
A. C.
Eckbreth
,
Laser Diagnostics for Combustion Temperature and Species
(
CRC Press
,
1996
), Vol. 3.
15.
M. P.
Lee
,
B. K.
McMillin
, and
R. K.
Hanson
, “
Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO
,”
Appl. Opt.
32
,
5379
5396
(
1993
).
16.
J. O.
Berg
and
W. L.
Shackleford
, “
Rotational redistribution effect on saturated laser-induced fluorescence
,”
Appl. Opt.
18
,
2093
2094
(
1979
).
17.
R.
Miles
,
C.
Cohen
,
J.
Connors
,
P.
Howard
,
S.
Huang
,
E.
Markovitz
, and
G.
Russell
, “
Velocity measurements by vibrational tagging and fluorescent probing of oxygen
,”
Opt. Lett.
12
,
861
863
(
1987
).
18.
P. M.
Danehy
,
S.
O’Byrne
,
F. P.
Houwing
,
J. S.
Fox
, and
D. R.
Smith
, “
Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide
,”
AIAA J.
41
,
263
271
(
2003
).
19.
B.
Hiller
,
R. A.
Booman
,
C.
Hassa
, and
R. K.
Hanson
, “
Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl
,”
Rev. Sci. Instrum.
55
,
1964
1967
(
1984
).
20.
R.
Sánchez-González
,
R. D. W.
Bowersox
, and
S. W.
North
, “
Vibrationally excited no tagging by NO(A2 Σ+) fluorescence and quenching for simultaneous velocimetry and thermometry in gaseous flows
,”
Opt. Lett.
39
,
2771
2774
(
2014
).
21.
R.
Miles
, “
Femtosecond laser electronic excitation tagging (FLEET) for imaging flow structure in unseeded hot or cold air or nitrogen
,” in
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
AIAA
,
2013
), p.
340
.
22.
M.
Zimmermann
and
R. B.
Miles
, “
Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter
,”
Appl. Phys. Lett.
37
,
885
887
(
1980
).
23.
J. C.
McDaniel
,
B.
Hiller
, and
R. K.
Hanson
, “
Simultaneous multiple-point velocity measurements using laser-induced iodine fluorescence
,”
Opt. Lett.
8
,
51
53
(
1983
).
24.
B.
Hiller
,
J. C.
McDaniel
,
E. C.
Rea
, and
R. K.
Hanson
, “
Laser-induced fluorescence technique for velocity field measurements in subsonic gas flows
,”
Opt. Lett.
8
,
474
476
(
1983
).
25.
F. K.
Lu
and
D. E.
Marren
,
Advanced Hypersonic Test Facilities
(
AIAA
,
2002
), Vol. 198.
26.
C.
Mundt
,
R.
Boyce
,
P.
Jacobs
, and
K.
Hannemann
, “
Validation study of numerical simulations by comparison to measurements in piston-driven shock-tunnels
,”
Aerosp. Sci. Technol.
11
,
100
109
(
2007
).
27.
R.
Stalker
, “
A study of the free-piston shock tunnel
,”
AIAA J.
5
,
2160
2165
(
1967
).
28.
I.
Vardavas
, “
Modelling reactive gas flows within shock tunnels
,”
Aust. J. Phys.
37
,
157
178
(
1984
).
29.
A.
Khraibut
,
S.
Gai
,
L.
Brown
, and
A.
Neely
, “
Laminar hypersonic leading edge separation—A numerical study
,”
J. Fluid Mech.
821
,
624
646
(
2017
).
30.
R.
Prakash
,
S.
Gai
, and
S.
O’Byrne
, “
A direct simulation Monte Carlo study of hypersonic leading-edge separation with rarefaction effects
,”
Phys. Fluids
30
,
063602
(
2018
).
31.
A.
Khraibut
,
S.
Gai
, and
A. J.
Neely
, “
Numerical investigation of bluntness effects on hypersonic leading edge separation
,” in
53rd AIAA Aerospace Sciences Meeting
(
AIAA
,
2015
), p.
0984
.
32.
R.
Prakash
,
S. L.
Gai
, and
S. B.
O’Byrne
, “
DSMC computations of separation over a ‘tick’ model in hypersonic high enthalpy transitional flows
,” in
55th AIAA Aerospace Sciences Meeting
(
AIAA
,
2017
), p.
1844
.
33.
J. M.
Seitzman
,
R. K.
Hanson
,
P.
DeBarber
, and
C.
Hess
, “
Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows
,”
Appl. Opt.
33
,
4000
4012
(
1994
).
34.
R.
Prakash
,
L.
Le Page
,
L.
McQuellin
,
S.
Gai
, and
S.
O’Byrne
, “
Direct simulation Monte Carlo computations and experiments on leading-edge separation in rarefied hypersonic flow
,”
J. Fluid Mech.
879
,
633
681
(
2019
).
35.
P. S.
Lykoudis
, “
A review of hypersonic wake studies
,”
AIAA J.
4
,
577
590
(
1966
).
36.
D. R.
Chapman
, “
Laminar mixing of a compressible fluid
,” NACA-TN-1800,
1949
.
37.
J.
Herrin
and
J.
Dutton
, “
Supersonic base flow experiments in the near wake of a cylindrical afterbody
,”
AIAA J.
32
,
77
83
(
1994
).
38.
E.
Baum
and
M.
Denison
, “
Compressible free shear layer with finite initial thickness
,”
AIAA J.
1
,
342
349
(
1963
).
39.
I.
Nompelis
and
G. V.
Candler
, “
US3D predictions of double-cone and hollow cylinder-flare flows at high-enthalpy
,” in
44th AIAA Fluid Dynamics Conference
(
AIAA
,
2014
), p.
3366
.
40.
M. S.
Holden
, “
Establishment time of laminar separated flows
,”
AIAA J.
9
,
2296
2298
(
1971
).
41.
O.
Tumuklu
and
D. A.
Levin
, “
On the temporal evolution in laminar separated boundary layer shock-interaction flows using DSMC
,” AIAA Paper 2017-1614,
2017
.
42.
C.
Goyne
,
R.
Stalker
, and
A.
Paull
, “
Skin-friction measurements in high-enthalpy hypersonic boundary layers
,”
J. Fluid Mech.
485
,
1
32
(
2003
).
43.
M. A.
Gallis
,
J. R.
Torczynski
,
S. J.
Plimpton
,
D. J.
Rader
, and
T.
Koehler
, “
Direct simulation Monte Carlo: The quest for speed
,”
AIP Conf. Proc.
1628
,
27
36
(
2014
).
44.
M.
Ivanov
,
G.
Markelov
, and
S.
Gimelshein
, “
Statistical simulation of reactive rarefied flows-numerical approach and applications
,” in
7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
(
AIAA
,
1998
), p.
2669
.
You do not currently have access to this content.