Reynolds shear stress and Reynolds normal stress in a differentially heated vertical channel were shown in a previous paper to scale by a mixed scale of the friction velocity uτ and the maximum mean vertical velocity Umax. This scale was empirically determined; this work presents a physical understanding of the new scaling. A new dimensional analysis is developed that involves a simple modification of the traditional inner–outer scaling. The functional dependencies in the new dimensional analysis are determined using direct numerical simulation (DNS) data. The DNS data confirm the new physical reasoning and reveal, as follows: (i) The velocity fluctuation variance at the centerline scales with an outer scale, which is the mixed scale uτUmax. (ii) The location of the maximum mean vertical velocity scales as an Obukhov-style length scale, which, in turn, scales as the geometric mean of the inner length scale and the outer length scale. (iii) The temperature fluctuation variance at the centerline scales with an outer temperature scale. (iv) The temperature fluctuation variance peaks in the inner layer, and its peak value scales with an inner temperature scale. The new outer scales obtained from the dimensional analysis are shown to be consistent with the properties of the mean momentum balance equation.

1.
W. K.
George
and
S. P.
Capp
, “
A theory for natural convection turbulent boundary layers next to heated vertical surfaces
,”
Int. J. Heat Mass Transfer
22
,
813
826
(
1979
).
2.
T. A. M.
Versteegh
, “
Numerical simulation of turbulent natural convection between two infinite, differentially heated vertical plates
,” Ph.D. dissertation (
Delft University of Technology
,
1998
).
3.
T. A. M.
Versteegh
and
F. T. M.
Nieuwstadt
, “
A direct numerical simulations of natural convection between two infinite vertical differentially heated walls scaling laws and wall functions
,”
Int. J. Heat Mass Transfer
42
,
3673
3693
(
1999
).
4.
T. A. M.
Versteegh
and
F. T. M.
Nieuwstadt
, “
Turbulent budgets of natural convection in an infinite, differentially heated, vertical channel
,”
Int. J. Heat Fluid Flow
19
,
135
149
(
1998
).
5.
M.
Hölling
, “
Asymptotische analyse von turbulenten strőmungen bei hohen Rayleigh-Zahlen
,” Ph.D. dissertation (
Technische Universität Hamburg-Harburg
,
2006
).
6.
A.
Shiri
and
W. K.
George
, “
Turbulent natural convection in a differentially heated vertical channel
,” in
ASME 2008 Heat Transfer Summer Conference Collocated With the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
(
American Society of Mechanical Engineers
,
2008
), pp.
285
291
.
7.
P.
Kiš
, “
Analyse turbulenter gemischter konvektion auf der basis von DNS-daten
,” Ph.D. dissertation (
Technische Universität Hamburg-Harburg
,
2011
).
8.
C. S.
Ng
,
D.
Chung
, and
A.
Ooi
, “
Turbulent natural convection scaling in a vertical channel
,”
Int. J. Heat Fluid Flow
44
,
554
562
(
2013
).
9.
C.
Ng
, “
Boundary layer and bulk dynamics in vertical natural convection
,” Ph.D. dissertation (
University of Melbourne
,
2017
).
10.
T.
Wei
, “
Scaling of Reynolds stresses in a differentially heated vertical channel
,”
Phys. Rev. Fluids
4
,
051501(R)
(
2019
).
11.
T.
Wei
, “
Multiscaling analysis of buoyancy-driven turbulence in a differentially heated vertical channel
,”
Phys. Rev. Fluids
4
,
073502
(
2019
).
12.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
The MIT Press
,
Cambridge, Massachusetts
,
1972
).
13.
M.
Hölling
and
H.
Herwig
, “
Asymptotic analysis of the near-wall region of turbulent natural convection flows
,”
J. Fluid Mech.
541
,
383
397
(
2005
).
14.
C.
Balaji
,
M.
Hölling
, and
H.
Herwig
, “
Nusselt number correlations for turbulent natural convection flows using asymptotic analysis of the near-wall region
,”
J. Heat Transfer
129
,
1100
1105
(
2007
).
15.
G. I.
Taylor
, “
The formation of a blast wave by a very intense explosion.-II. The atomic explosion of 1945
,”
Proc. R. Soc. London, Ser. A
201
,
175
186
(
1950
).
16.
A. A. R.
Townsend
, “
Temperature fluctuations over a heated horizontal surface
,”
J. Fluid Mech.
5
,
209
241
(
1959
).
17.
L. I.
Sedov
,
Similarity and Dimensional Methods in Mechanics
(
Academic Press
,
New York
,
1959
).
18.
G. I.
Barenblatt
,
Dimensional Analysis
(
Gordon and Breach Science Publisher
,
New York
,
1987
).
19.
T.
Von Kármán
, “
Mechanische änlichkeit und turbulenz
,”
Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl.
1930
,
58
76
.
20.
J.
Nikuradse
,
Gesetzmässigkeiten der Turbulenten Strömung in Glatten Rohren: aus dem Kaiser-Wilhelm-Institut für Strömungsforschg
(
VDI-Verlag
,
Göttingen
,
1932
).
21.
H. B.
Squire
, “
The friction temperature: A useful parameter in heat-transfer analysis
,” in
Proceedings of General Discussion on Heat Transfer
(
Inst. Mech. Engng. and ASME.
London
,
1951
), pp.
185
186
.
22.
B. A.
Kader
and
A. M.
Yaglom
, “
Heat and mass transfer laws for fully turbulent wall flows
,”
Int. J. Heat Mass Transfer
15
,
2329
2351
(
1972
).
23.
A. S.
Monin
and
A. M.
Yaglom
,
Statistical Fluid Mechanics, Volume I: Mechanics of Turbulence
(
The MIT Press
,
Cambridge, Massachusetts
,
1965
), Vol. 1.
24.
J.
Wyngaard
,
Turbulence in the Atmosphere
(
Cambridge University Press
,
2010
).
25.
R. R.
Long
and
T.-C.
Chen
, “
Experimental evidence for the existence of the ‘mesolayer’ in turbulent systems
,”
J. Fluid Mech.
105
,
19
59
(
1981
).
26.
N.
Afzal
, “
Fully developed turbulent flow in a pipe: An intermediate layer
,”
Arch. Appl. Mech.
52
,
355
377
(
1982
).
27.
T.
Wei
,
P.
Fife
,
J.
Klewicki
, and
P.
McMurtry
, “
Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows
,”
J. Fluid Mech.
522
,
303
327
(
2005
).
28.
A. M.
Obukhov
, “
Turbulentnost’ v temperaturnoj - neodnorodnoj atmosfere (Turbulence in an atmosphere with a non-uniform temperature)
,”
Trudy Inst. Theor. Geofiz. AN SSSR
1
,
95
115
(
1946
).
29.
A. M.
Obukhov
, “
Turbulence in an atmosphere with a non-uniform temperature
,”
Boundary-Layer Meteorol.
2
,
7
29
(
1971
).
30.
T.
Wei
, “
Integral properties of temperature variance production in a turbulent channel flow with passive scalar transport
,”
Int. J. Heat Mass Transfer
133
,
393
404
(
2019
).
31.
T.
Wei
, “
Multiscaling analysis of the mean thermal energy balance equation in fully developed turbulent channel flow
,”
Phys. Rev. Fluids
3
,
094608
(
2018
).
You do not currently have access to this content.