In recent investigations of the unsteadiness of flow separation, time-resolved whole-field information, such as the temporal variation of reverse flow area and proper orthogonal decomposition modes, is commonly used to quantify the flapping motion of separation bubbles. In the present study, we explore the possibility of tracking the flapping motion of flow separation using only pointwise measurements. A generalized framework for designing the optimal number and positions of measurement points is presented and assessed using time-resolved particle image velocimetry measurement data for turbulent flow separations induced by a broad range of two- and three-dimensional surface-mounted bluff bodies. Two models are proposed to approximate the temporal variation of reverse flow area over the bluff bodies. These two models require only the mean reattachment length, mean velocity at the body height in the oncoming flow, and time-resolved single- or two-point measurements of streamwise velocity. The optimal location for the single-point model is in the rear part of the mean separation bubble around the highest elevation of the mean separating streamline. While the single-point model predicts the temporal variation of reverse flow area reasonably well, it consistently misidentifies the subdominant frequency of reverse flow area as the dominant one. For the two-point model, one measurement point is in the rear part of the mean separation bubble and the other measurement point is slightly downstream of the mean reattachment point. The two-point model reproduces the temporal variation as well as the dominant frequency of reverse flow area remarkably well. Overall, the present study proposes a simple and reliable method to track the temporal variation of reverse flow area and holds promise for the future development of active closed-loop flow control based on real-time flapping motion of separation bubbles.

1.
Adrian
,
R. J.
,
Meinhart
,
C. D.
, and
Tomkins
,
C. D.
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
54
(
2000
).
2.
Adrian
,
R. J.
and
Moin
,
P.
, “
Stochastic estimation of organized turbulent structure: Homogeneous shear flow
,”
J. Fluid Mech.
190
,
531
559
(
1988
).
3.
Barros
,
D.
,
Borée
,
J.
,
Noack
,
B. R.
,
Spohn
,
A.
, and
Ruiz
,
T.
, “
Bluff body drag manipulation using pulsed jets and Coanda effect
,”
J. Fluid Mech.
805
,
422
459
(
2016
).
4.
Bergmann
,
M.
,
Cordier
,
L.
, and
Brancher
,
J.-P.
, “
Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced order model
,”
Phys. Fluids
17
,
097101
(
2005
).
5.
Camussi
,
R.
,
Felli
,
M.
,
Pereira
,
F.
,
Aloisio
,
G.
, and
Di Marco
,
A.
, “
Statistical properties of wall pressure fluctuations over a forward-facing step
,”
Phys. Fluids
20
,
075113
(
2008
).
6.
Cherry
,
N. J.
,
Hillier
,
R.
, and
Latour
,
M. E. M. P.
, “
Unsteady measurements in a separated and reattaching flow
,”
J. Fluid Mech.
144
,
13
46
(
1984
).
7.
Chiatto
,
M.
,
de Luca
,
L.
,
Hlevca
,
D.
, and
Grasso
,
F.
, “
Modal analysis of actively controlled flow past a backward facing ramp
,” in
AIAA SciTech Forum, 6–10 January 2020
(
AIAA
,
Orlando, FL
,
2020
).
8.
Choi
,
H.
,
Hinze
,
M.
, and
Kunisch
,
K.
, “
Instantaneous control of backward-facing step flows
,”
Appl. Numer. Math.
31
,
133
158
(
1999
).
9.
Choi
,
H.
,
Jeon
,
W.-P.
, and
Kim
,
J.
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid Mech.
40
,
113
139
(
2008
).
10.
Dandois
,
J.
,
Garnier
,
E.
, and
Sagaut
,
P.
, “
Numerical simulation of active separation control by a synthetic jet
,”
J. Fluid Mech.
574
,
25
58
(
2007
).
11.
Driver
,
D. M.
,
Seegmiller
,
H. L.
, and
Marvin
,
J. G.
, “
Time-dependent behavior of a reattaching shear layer
,”
AIAA J.
25
(
7
),
914
919
(
1987
).
12.
Eaton
,
J. K.
and
Johnston
,
J. P.
, “
Low frequency unsteadiness of a reattaching turbulent shear layer
,” in
Turbulent Shear Flows
(
Springer, Berlin, Heidelberg
,
1982
), Vol. 3, pp.
162
170
.
13.
Fang
,
X.
and
Tachie
,
M. F.
, “
Flows over surface-mounted bluff bodies with different spanwise widths submerged in a deep turbulent boundary layer
,”
J. Fluid Mech.
877
,
717
758
(
2019a
).
14.
Fang
,
X.
and
Tachie
,
M. F.
, “
On the unsteady characteristics of turbulent separations over a forward-backward-facing step
,”
J. Fluid Mech.
863
,
994
1030
(
2019b
).
15.
Fang
,
X.
and
Tachie
,
M. F.
, “
Spatio-temporal dynamics of flow separation induced by a forward-facing step submerged in a thick turbulent boundary layer
,”
J. Fluid Mech.
(submitted) (
2020
).
16.
Forliti
,
D. J.
and
Strykowski
,
P. J.
, “
Controlling turbulence in a rearward-facing step combustor using countercurrent shear
,”
J. Fuids Eng.
127
,
438
448
(
2005
).
17.
Graziani
,
A.
,
Kerhervé
,
F.
,
Martinuzzi
,
R. J.
, and
Keirsbulck
,
L.
, “
Dynamics of the recirculating areas of a forward-facing step
,”
Exp. Fluids
59
,
154
(
2018
).
18.
Hearst
,
R. J.
,
Gomit
,
G.
, and
Ganapathisubramani
,
B.
, “
Effect of turbulence on the wake of a wall-mounted cube
,”
J. Fluid Mech.
804
,
513
530
(
2016
).
19.
Hudy
,
L. M.
,
Naguib
,
A. M.
, and
Humphreys
,
W. M.
, “
Wall-pressure-array measurements beneath a separating/reattaching flow region
,”
Phys. Fluids
15
(
3
),
706
717
(
2003
).
20.
Hussein
,
H. J.
and
Martinuzzi
,
R. J.
, “
Energy balance for turbulent flow around a surface mounted cube placed in a channel
,”
Phys. Fluids
8
(
3
),
764
780
(
1996
).
21.
Kiya
,
M.
and
Sasaki
,
K.
, “
Structure of a turbulent separation bubble
,”
J. Fluid Mech.
137
,
83
113
(
1983
).
22.
Kurelek
,
J. W.
,
Kotsonis
,
M.
, and
Yarusevych
,
S.
, “
Transition in a separation bubble under tonal and broadband acoustic excitation
,”
J. Fluid Mech.
853
,
1
36
(
2018
).
23.
Largeau
,
J. F.
and
Moriniere
,
V.
, “
Wall pressure fluctuations and topology in separated flows over a forward-facing step
,”
Exp. Fluids
42
,
21
40
(
2007
).
24.
Li
,
R.
,
Borée
,
J.
,
Noack
,
B. R.
,
Cordier
,
L.
, and
Harambat
,
F.
, “
Drag reduction mechanisms of a car model at moderate yaw by bi-frequency forcing
,”
Phys. Rev. Fluids
4
,
034604
(
2019
).
25.
Lim
,
H. C.
,
Castro
,
I. P.
, and
Hoxey
,
R. P.
, “
Bluff bodies in deep turbulent boundary layers: Reynolds-number issues
,”
J. Fluid Mech.
571
,
97
118
(
2007
).
26.
McAuliffe
,
B. R.
, “
Improving the aerodynamic efficiency of heavy duty vehicles: Wind tunnel test results of trailer-based drag-reduction technologies
,” Technical Report No. LTR-AL-2015-0272,
National Research Council Canada
,
2015
.
27.
Meyer
,
K. E.
,
Pedersen
,
J. M.
, and
Özcan
,
O.
, “
A turbulent jet in crossflow analysed with proper orthogonal decomposition
,”
J. Fluid Mech.
583
,
199
227
(
2007
).
28.
Mohammed-Taifour
,
A.
and
Weiss
,
J.
, “
Unsteadiness in a large turbulent separation bubble
,”
J. Fluid Mech.
799
,
383
412
(
2016
).
29.
Monty
,
J. P.
,
Hutchins
,
N.
,
Ng
,
H. C. H.
,
Marusic
,
I.
, and
Chong
,
M. S.
, “
A comparison of turbulent pipe, channel and boundary layer flows
,”
J. Fluid Mech.
632
,
431
442
(
2009
).
30.
Park
,
D. S.
,
Ladd
,
D. M.
, and
Hendricks
,
E. W.
, “
Feedback control of von Kármán vortex shedding behind a circular cylinder at low Reynolds numbers
,”
Phys. Fluids
6
(
7
),
2390
2405
(
1994
).
31.
Patten
,
J.
,
McAuliffe
,
B.
,
Mayda
,
W.
, and
Tanguay
,
B.
, “
Review of aerodynamic drag reduction devices for heavy trucks and buses
,” Technical Report No. CSTT-HVC-TR-205,
National Research Council Canada
,
2012
.
32.
Pearson
,
D. S.
,
Goulart
,
P. J.
, and
Ganapathisubramani
,
B.
, “
Turbulent separation upstream of a forward-facing step
,”
J. Fluid Mech.
724
,
284
304
(
2013
).
33.
Persoons
,
T.
,
Hoefnagels
,
A.
, and
den Bulck
,
E. V.
, “
Calibration of an oscillating hot-wire anemometer for bidirectional velocity measurements
,”
Exp. Fluids
40
,
555
567
(
2006
).
34.
Pouryoussefi
,
S. G.
,
Mirzaei
,
M.
, and
Hajipour
,
M.
, “
Experimental study of separation bubble control behind a backward-facing step using plasma actuators
,”
Acta Mech.
226
,
1153
1165
(
2015
).
35.
Roussopoulos
,
K.
, “
Feedback control of vortex shedding at low Reynolds numbers
,”
J. Fluid Mech.
248
,
267
296
(
1993
).
36.
Schmid
,
P. J.
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
37.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
, “
Spectral proper orthogonal decomposition
,”
J. Fluid Mech.
792
,
798
828
(
2016
).
38.
Sirovich
,
L.
, “
Turbulence and the dynamics of coherent structures. I. Coherent structures
,”
Q. Appl. Math.
45
(
3
),
561
571
(
1987
).
39.
Spazzini
,
P. G.
,
Iuso
,
G.
,
Onorato
,
M.
,
Zurlo
,
N.
, and
Di Cicca
,
G. M.
, “
Unsteady behavior of back-facing step flow
,”
Exp. Fluids
30
(
5
),
551
561
(
2001
).
40.
Stella
,
F.
,
Mazellier
,
N.
,
Joseph
,
P.
, and
Kourta
,
A.
, “
Mass entrainment-based model for separating flows
,”
Phys. Rev. Fluids
3
,
114702
(
2018
).
41.
Thacker
,
A.
,
Aubrun
,
S.
,
Leroy
,
A.
, and
Devinant
,
P.
, “
Experimental characterization of flow unsteadiness in the centerline plane of an Ahmed body rear slant
,”
Exp. Fluids
54
,
1479
(
2013
).
42.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
, “
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
,”
J. Fluid Mech.
847
,
821
867
(
2018
).
43.
Vinuesa
,
R.
,
Schlatter
,
P.
,
Malm
,
J.
,
Mavriplis
,
C.
, and
Henningson
,
D. S.
, “
Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions
,”
J. Turbul.
16
(
6
),
555
587
(
2015
).
44.
Wu
,
W.
,
Meneveau
,
C.
, and
Mittal
,
R.
, “
Spatio-temporal dynamics of turbulent separation bubbles
,”
J. Fluid Mech.
883
,
A45
(
2020
).
You do not currently have access to this content.