A targeted turbulent flow control strategy, based on selective heating of streamwise-aligned heat strips, is assessed for drag reduction using direct numerical simulations of variable viscosity and compressible turbulent channel flows. As increasing the temperature of a gas increases its viscosity, heating is generally an unfavorable drag mitigation approach. However, through a selective spatial arrangement of the heating array, the slight increase in viscosity and decrease in density can serve to modify the organization of the streamwise-aligned structures and the likelihood of the ejection and sweep events near the wall. This can, under specific conditions, lead to a very modest drag reduction. The optimal spatial arrangement is identified using a bidimensional empirical mode decomposition and targets the near-wall, large-scale turbulent motion. The drag coefficient, at constant mass flow rate, remains unchanged with heating despite up to an 11% increase in the local viscosity above the heating strips. When accounting for the viscosity variation in the drag reduction calculation, an effective drag reduction of 6% is observed.

1.
D. M.
Bushnell
and
K. J.
Moore
, “
Drag reduction in nature
,”
Annu. Rev. Fluid Mech.
23
,
65
79
(
1991
).
2.
R.
García-Mayoral
and
J.
Jiménez
, “
Hydrodynamic stability and breakdown of the viscous regime over riblets
,”
J. Fluid Mech.
678
,
317
347
(
2011
).
3.
D. M.
Bushnell
and
J. N.
Hefner
, “
Riblets
,” in
Viscous Drag Reduction in Boundary Layers
, Progress in Astronautics and Aeronautics (
AIAA
,
1990
), pp.
203
261
.
4.
H.
Choi
,
P.
Moin
, and
J.
Kim
, “
Direct numerical simulation of turbulent flow over riblets
,”
J. Fluid Mech.
225
,
503
539
(
1993
).
5.
S.
Raayai-Ardakani
and
G. H.
McKinley
, “
Geometric optimization of riblet-textured surfaces for drag reduction in laminar boundary layer flows
,”
Phys. Fluids
31
,
053601
(
2019
).
6.
A.
Pollard
, “
Passive and active control of near-wall turbulence
,”
Prog. Aeronaut. Sci.
33
,
689
708
(
1997
).
7.
A.
Pollard
, “
Near-wall turbulence control
,” in
Flow Control: Fundamentals and Practices
, edited by
M.
Gad-el Hak
,
A.
Pollard
, and
J.-P.
Bonnet
(
Springer-Verlag
,
Berlin
,
1998
), pp.
431
466
.
8.
M. E.
Rosti
,
L.
Brandt
, and
A.
Pinelli
, “
Turbulent channel flow over an anisotropic porous wall-drag increase and reduction
,”
J. Fluid Mech.
842
,
381
394
(
2018
).
9.
A.
Silvestri
,
F.
Ghanadi
,
M.
Arjomandi
,
R.
Chin
,
B.
Cazzolato
, and
A.
Zander
, “
Attenuation of turbulence by the passive control of sweep events in a turbulent boundary layer using micro-cavities
,”
Phys. Fluids
29
,
115102
(
2017
).
10.
A.
Rajappan
,
K.
Golovin
,
B.
Tobelmann
,
V.
Pillutla
,
Abhijeet
,
W.
Choi
,
A.
Tuteja
, and
G. H.
McKinley
, “
Influence of textural statistics on drag reduction by scalable, randomly rough superhydrophobic surfaces in turbulent flow
,”
Phys. Fluids
31
,
042107
(
2019
).
11.
O.
Mahfoze
and
S.
Laizet
, “
Skin-friction drag reduction in a channel flow with streamwise-aligned plasma actuators
,”
Int. J. Heat Fluid Flow
66
,
83
94
(
2017
).
12.
M. T.
Hehner
,
D.
Gatti
, and
J.
Kriegseis
, “
Stokes-layer formation under absence of moving parts—a novel oscillatory plasma actuator design for turbulent drag reduction
,”
Phys. Fluids
31
,
051701
(
2019
).
13.
J.
Lee
,
S.
Yoon Jung
,
H.
Jin Sung
, and
T.
Zaki
, “
Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity
,”
J. Fluid Mech.
726
,
196
225
(
2013
).
14.
R. K.
Cheng
and
T. T.
Ng
, “
Some aspects of strongly heated turbulent boundary layer flow
,”
Phys. Fluids
25
,
1333
1341
(
1982
).
15.
Y.
Kametani
and
K.
Fukagata
, “
Direct numerical simulation of spatially developing turbulent boundary layer for skin friction drag reduction by wall surface-heating or cooling
,”
J. Turbul.
13
,
1
20
(
2012
).
16.
M.
Gad-El-Hak
,
Flow Control: Passive, Active, and Reactive Flow Management
(
Cambridge University Press
,
Cambridge
,
2000
).
17.
R. F.
Blackwelder
and
M.
Gad-el Hak
, “
Method and apparatus for reducing turbulent skin friction
,” U.S. patent US4932612A (
12 June 1990
).
18.
M.
Gad-el Hak
and
R. F.
Blackwelder
, “
A drag reduction method for turbulent boundary layers
,” in
25th AIAA Aerospace Sciences Meeting
(
Aerospace Sciences Meetings
,
Reno, NV
,
1987
).
19.
M.
Gad-el Hak
and
R. F.
Blackwelder
, “
Selective suction for controlling bursting events in a boundary layer
,”
AIAA J.
27
,
308
314
(
1989
).
20.
H. S.
Yoon
,
O. A.
El-Samni
, and
H. H.
Chun
, “
Drag reduction in turbulent channel flow with periodically arrayed heating and cooling strips
,”
Phys. Fluids
18
,
025104
(
2006
).
21.
H.
Mamori
,
K.
Fukagata
,
S.
Obi
, and
J.
Hœpffner
, “
Drag reduction in channel flow by traveling wave-like surface heating/cooling
,” in
TSFP Digital Library Online
(
Begel House, Inc.
,
2009
).
22.
D.
Floryan
and
J. M.
Floryan
, “
Drag reduction in heated channels
,”
J. Fluid Mech.
765
,
353
395
(
2015
).
23.
J. M.
Floryan
,
S.
Shadman
, and
M. Z.
Hossain
, “
Heating-induced drag reduction in relative movement of parallel plates
,”
Phys. Rev. Fluids
3
,
1
26
(
2018
).
24.
H.
Choi
,
P.
Moin
, and
J.
Kim
, “
Active turbulence control for drag reduction in wall- bounded flows
,”
J. Fluid Mech.
262
,
75
110
(
1994
).
25.
C.
Cheng
,
W.
Li
,
A.
Lozano-Durán
, and
H.
Liu
, “
Identity of attached eddies in turbulent channel flows with bidimensional empirical mode decomposition
,”
J. Fluid Mech.
870
,
1037
1071
(
2019
).
26.
J.
Larsson
and
S. K.
Lele
, “
Direct numerical simulations of canonical shock/turbulence interaction
,”
Phys. Fluids
21
,
1
12
(
2009
).
27.
J.
Larsson
,
I.
Bermejo-Moreno
, and
S. K.
Lele
, “
Reynolds- and Mach-number effects in canonical shock-turbulence interaction
,”
J. Fluid Mech.
717
,
293
321
(
2013
).
28.
I.
Bermejo-Moreno
,
J.
Bodart
,
J.
Larsson
,
B. M.
Barney
,
J. W.
Nichols
, and
S.
Jones
, “
Solving the compressible Navier-Stokes equations on up to 1.97 million cores and 4.1 trillion grid points
,” in
Proceedings of SC13: International Conference for High Performance Computing, Networking, Storage and Analysis
(
IEEE Computer Society
,
New York, NY
,
2013
) pp.
1
10
.
29.
K.
Kim
,
J.-P.
Hickey
, and
C.
Scalo
, “
Pseudophase change effects in turbulent channel flow under transcritical temperature conditions
,”
J. Fluid Mech.
871
,
52
91
(
2019
).
30.
E.
Johnsen
,
J.
Larsson
,
A. V.
Bhagatwala
,
W. H.
Cabot
,
P.
Moin
,
B. J.
Olsson
,
P. S.
Rawat
,
S. K.
Shankar
,
B.
Sjogreen
,
H. C.
Yee
,
X.
Zhong
, and
S. K.
Lele
, “
Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves
,”
J. Comput. Phys.
229
,
1213
1237
(
2010
).
31.
L.
Agostini
and
M. A.
Leschziner
, “
On the influence of outer large-scale structures on near-wall turbulence in channel flow
,”
Phys. Fluids
26
,
075107
(
2014
).
32.
W.
Schoppa
and
F.
Hussain
, “
Coherent structure generation in near-wall turbulence
,”
J. Fluid Mech.
453
,
57
108
(
2002
).
33.
K.
Fukagata
,
K.
Iwamoto
, and
N.
Kasagi
, “
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
,”
Phys. Fluids
14
,
L73
L76
(
2002
).
34.
T.
Gomez
,
V.
Flutet
, and
P.
Sagaut
, “
Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows
,”
Phys. Rev. E
79
,
035301
(
2009
).
35.
M.
de Giovanetti
,
Y.
Hwang
, and
H.
Choi
, “
Skin-friction generation by attached eddies in turbulent channel flow
,”
J. Fluid Mech.
808
,
511
538
(
2016
).
You do not currently have access to this content.