In this numerical study, we investigate the grid dependence of the Chebyshev collocation algorithm for flow stability analysis of solid rocket motors. Conventional analyses tend to focus on how the errors of the individual eigenvalues depend on the level of grid refinement. Here, we perform a structural error analysis to estimate the overall error of the computed spectrum. First, we validate the structural error analysis on a structural oscillation problem with analytical spectra, yielding a simple linear relation between the number of converged eigenvalues and the number of grid points. We then apply the analysis to Taylor–Culick flow, yielding a similar relation for the converged eigenvalue points. We find that the structural error analysis provides reliable criteria for the grid computation in flow stability analysis of a real solid rocket motor. In studies involving numerical spectra, the proposed structural error provides an alternative tool for error analysis of problems such as Taylor–Culick flow, where the computed individual eigenvalues do not necessarily converge to fixed values with increasing grid refinement.

1.
F. E. C.
Culick
and
V.
Yang
, “
Prediction of the stability of unsteady motions in solid-propellant rocket motors
,” in
Nonsteady Burning and Combustion Stability of Solid Propellants
, edited by
L.
De Luca
,
E. W.
Price
, and
M.
Summerfield
(
American Institute of Aeronautics and Astronautics
,
1992
).
2.
M.
Laureti
,
G.
Rossi
,
B.
Favini
, and
F.
Paglia
, “
P80 SRM pressure oscillations reconstruction
,” in
2018 Joint Propulsion Conference
(
American Institute of Aeronautics and Astronautics
,
Cincinnati, Ohio
,
2018
).
3.
G. A.
Flandro
, “
Effects of vorticity on rocket combustion stability
,”
J. Propul. Power
11
,
607
625
(
1995
).
4.
N.
Lupoglazoff
and
F.
Vuillot
, “
Parietal vortex shedding as a cause of instability for long solid propellant motors-numerical simulations and comparisons with firing tests
,” in
34th Aerospace Sciences Meeting and Exhibit
(
American Institute of Aeronautics and Astronautics, Reno
,
Nevada
,
1996
), p.
761
.
5.
F.
Vuillot
, “
Vortex-shedding phenomena in solid rocket motors
,”
J. Propul. Power
11
,
626
639
(
1995
).
6.
S. V.
Apte
and
V.
Yang
, “
A large-eddy simulation study of transition and flow instability in a porous-walled chamber with mass injection
,”
J. Fluid Mech.
477
,
215
225
(
2003
).
7.
T.-Y.
Qi
,
C.
Liu
,
M.-J.
Ni
, and
J.-C.
Yang
, “
The linear stability of Hunt-Rayleigh-Bénard flow
,”
Phys. Fluids
29
,
064103
(
2017
).
8.
R.
Guillerm
,
C.
Kang
,
C.
Savaro
,
V.
Lepiller
,
A.
Prigent
,
K.-S.
Yang
, and
I.
Mutabazi
, “
Flow regimes in a vertical Taylor-Couette system with a radial thermal gradient
,”
Phys. Fluids
27
,
094101
(
2015
).
9.
C.
Zhao
,
Z.
Chen
, and
D.
Li
, “
Instantaneous linear stability of plane Poiseuille flow forced by spanwise oscillations
,”
Phys. Fluids
31
,
043608
(
2019
).
10.
M.
Gaster
, “
On the effects of boundary-layer growth on flow stability
,”
J. Fluid Mech.
66
,
465
480
(
1974
).
11.
V. N.
Varapaev
and
V. I.
Yagodkin
, “
Flow stability in a channel with porous walls
,”
Fluid Dyn.
4
,
60
62
(
1969
).
12.
G.
Casalis
,
G.
Avalon
, and
J.-P.
Pineau
, “
Spatial instability of planar channel flow with fluid injection through porous walls
,”
Phys. Fluids
10
,
2558
2568
(
1998
).
13.
J.
Griffond
and
G.
Casalis
, “
On the dependence on the formulation of some nonparallel stability approaches applied to the Taylor flow
,”
Phys. Fluids
12
,
466
468
(
2000
).
14.
F.
Chedevergne
,
G.
Casalis
, and
T.
Feraille
, “
Biglobal linear stability analysis of the flow induced by wall injection
,”
Phys. Fluids
18
,
014103
(
2006
).
15.
F.
Chedevergne
,
G.
Casalis
, and
J.
Majdalani
, “
Direct numerical simulation and biglobal stability investigations of the gaseous motion in solid rocket motors
,”
J. Fluid Mech.
706
,
190
218
(
2012
).
16.
G.
Boyer
,
G.
Casalis
, and
J.-L.
Estivalèzes
, “
Stability analysis and numerical simulation of simplified solid rocket motors
,”
Phys. Fluids
25
,
084109
(
2013
).
17.
J.
Majdalani
,
T.
Ramesh Kumar
, and
M.
Akiki
, “
Biglobal instability of the compressible Taylor-Culick solution in cylindrical rockets
,” in
52nd AIAA/SAE/ASEE Joint Propulsion Conference
(
American Institute of Aeronautics and Astronautics
,
Salt Lake City, Utah
,
2016
), p.
4792
.
18.
J.
Majdalani
, “
On steady rotational high speed flows: The compressible Taylor–Culick profile
,”
Proc. R. Soc. A
463
,
131
162
(
2007
).
19.
G.
Boyer
,
G.
Casalis
, and
J.
Estivalèzes
, “
Stability and sensitivity analysis in a simplified solid rocket motor flow
,”
J. Fluid Mech.
722
,
618
644
(
2013
).
20.
G.
Boyer
,
G.
Casalis
, and
J.-l.
Estivalèzes
, “
Theoretical investigation of the parietal vortex shedding in solid rocket motors
,” in
48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
(
American Institute of Aeronautics and Astronautics, Atlanta
,
Georgia
,
2012
), p.
3825
.
21.
J. A.
Weideman
and
S. C.
Reddy
, “
A MATLAB differentiation matrix suite
,”
ACM Trans. Math. Software (TOMS)
26
,
465
519
(
2000
).
22.
L. N.
Trefethen
,
Spectral Methods in MATLAB
(
SIAM
,
2000
), Vol. 10.
You do not currently have access to this content.