The problem of high velocity impact between two solid plates where one of them has a non-uniformly disturbed density field is studied. The nature of an initial perturbation here differs from one considered in the classical Richtmyer–Meshkov instability (RMI). We consider the instability that develops from the initial perturbations of the density field with a flat interface between plates, while RMI is triggered by a shock passing through the corrugated interface. The structure of perturbation fields generated in the plates due to impact and the interface evolution are studied via the analytic linear and nonlinear models for normal modes using the Euler equations for compressible fluids and appropriate boundary conditions. Such analysis reveals three different regimes in which the generated disturbances can develop depending on the direction of the perturbation wave vector. The obtained theoretical findings are in good quantitative agreement with our detailed numerical simulations.

1.
R. D.
Richtmyer
, “
Taylor instability in shock acceleration of compressible fluids
,”
Commun. Pure Appl. Math.
13
,
297
(
1960
).
2.
E. E.
Meshkov
, “
Instability of the interface of two gases accelerated by a shock wave
,”
Fluid Dyn.
4
(
5
),
101
(
1969
).
3.
Y.
Yang
,
Q.
Zhang
, and
D. H.
Sharp
, “
Small amplitude theory of Richtmyer–Meshkov instability
,”
Phys. Fluids
6
(
5
),
1856
(
1994
).
4.
J. G.
Wouchuk
and
K.
Nishihara
, “
Linear perturbation growth at a shocked interface
,”
Phys. Plasmas
3
(
10
),
3761
(
1996
).
5.
J. G.
Wouchuk
, “
Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected
,”
Phys. Rev. E
63
,
056303
(
2001
).
6.
J. G.
Wouchuk
and
K.
Nishihara
, “
Normal velocity freeze-out of the Richtmyer-Meshkov instability when a shock is reflected
,”
Phys. Rev. E
70
,
026305
(
2004
).
7.
A. L.
Velikovich
,
J. G.
Wouchuk
,
C.
Huete Ruiz de Lira
,
N.
Metzler
,
S.
Zalesak
, and
A. J.
Schmitt
, “
Shock front distortion and Richtmyer-Meshkov-type growth caused by a small preshock nonuniformity
,”
Phys. Plasmas
14
,
072706
(
2007
).
8.
K.
Nishihara
,
J. G.
Wouchuk
,
C.
Matsuoka
,
R.
Ishizaki
, and
V. V.
Zhakhovsky
, “
Richtmyer–Meshkov instability: Theory of linear and nonlinear evolution
,”
Philos. Trans. R. Soc., A
368
,
1769
(
2010
).
9.
C.
Matsuoka
,
K.
Nishihara
, and
Y.
Fukuda
, “
Nonlinear evolution of an interface in the Richtmyer-Meshkov instability
,”
Phys. Rev. E
67
,
036301
(
2003
).
10.
K.
Prestridge
,
G.
Orlicz
,
S.
Balasubramanian
, and
B. J.
Balakumar
, “
Experiments of the Richtmyer–Meshkov instability
,”
Philos. Trans. R. Soc., A
371
,
20120165
(
2013
).
11.
J.
Griffond
, “
Linear interaction analysis for Richtmyer-Meshkov instability at low Atwood numbers
,”
Phys. Fluids
18
,
054106
(
2006
).
12.
M.
Brouillette
, “
The Richtmyer-Meshkov instability
,”
Annu. Rev. Fluid Mech.
34
,
445
(
2002
).
13.
N. A.
Inogamov
,
A. M.
Oparin
, arXiv:0503190v1 [physics.flu-dyn] (
2005
).
14.
A. L.
Velikovich
,
J. P.
Dahlburg
,
A. J.
Schmitt
,
J. H.
Gardner
,
L.
Phillips
,
F. L.
Cochran
,
Y. K.
Chong
,
G.
Dimonte
, and
N.
Metzler
, “
Richtmyer–Meshkov-like instabilities and early-time perturbation growth in laser targets and Z-pinch loads
,”
Commun. Pure Appl. Math.
7
(
5
),
1662
(
2000
).
15.
F.
Cobos-Campos
and
J. G.
Wouchuk
, “
Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected
,”
Phys. Rev. E
93
,
053111
(
2016
).
16.
F.
Cobos-Campos
and
J. G.
Wouchuk
, “
Analytical scalings of the linear Richtmyer-Meshkov instability when a rarefaction is reflected
,”
Phys. Rev. E
96
,
013102
(
2017
).
17.
F.
Cobos-Campos
and
J. G.
Wouchuk
, “
Kinetic energy of the rotational flow behind an isolated rippled shock wave
,”
Phys. Scr.
93
,
094003
(
2018
).
18.
M.
El Rafei
,
M.
Flaig
,
D. L.
Youngs
, and
B.
Thornber
, “
Three-dimensional simulations of turbulent mixing in spherical implosions
,”
Phys. Fluids
31
,
114101
(
2019
).
19.
F.
Gao
,
Y.
Zhang
,
Z.
He
, and
B.
Tian
, “
Formula for growth rate of mixing width applied to Richtmyer-Meshkov instability
,”
Phys. Fluids
28
,
114101
(
2016
).
20.
J.
Kline
 et al., “
Progress of indirect drive inertial confinement fusion in the Unites States
,”
Nucl. Fusion
59
,
112018
(
2019
).
21.
J.
Lindl
,
O.
Landen
,
J.
Edwards
,
E.
Moses
, and
NIC Team
, “
Review of the National Ignition Campaign 2009-2012
,”
Phys. Plasmas
21
,
020501
(
2014
).
22.
D. I.
Blokhintsev
, “
A moving sound receiver
,”
Izv. Akad. Nauk SSSR
47
(
1
),
22
(
1945
) (in Russian).
23.
J. M.
Burgers
, “
On the transmission of sound wave through a shock wave
,”
Proc. K. Ned. Akad. Wet.
49
,
273
(
1946
).
24.
F. K.
Moore
, “
Unsteady oblique interaction of a shock wave with a plane disturbance
,”
Report No. NACA TN 2879 (
1953
).
25.
J.
Brillouin
, “
Reflection and refraction of acoustic waves by a shock wave
,”
Acustica
5
(
3
),
149
(
1955
).
26.
V. M.
Kontorovich
, “
Reflection and refraction of sound by a shock waves
,”
Akust. Zh.
5
(
3
),
314
(
1959
).
27.
J. F.
McKenzie
and
K. O.
Westphal
, “
Interaction of linear waves with oblique shock waves
,”
Phys. Fluids
11
(
11
),
2350
(
1968
).
28.
I.
Rutkevich
,
E.
Zaretsky
, and
M.
Mond
, “
Resonant reflection of two-dimensional acoustic waves from shocks in solids
,”
J. Phys.
4
,
723
(
1994
).
29.
K.
Manesh
,
S.
Lee
,
S. K.
Lele
, and
P.
Moin
, “
The interaction of an isotropic field of acoustic waves with a shock wave
,”
J. Fluid Mech.
300
,
383
(
1995
).
30.
J. G.
Wouchuk
,
C.
Huete
, and
A. L.
Velikovich
, “
Interaction of a planar shock with an isotropic field of sound waves
,”
AIP Conf. Proc.
1426
,
1627
(
2012
).
31.
H. S.
Ribner
, “
Acoustic energy flux from shock-turbulence interaction
,”
J. Fluid Mech.
35
(
2
),
299
(
1969
).
32.
K.
Manesh
,
S. K.
Lele
, and
P.
Monin
, “
The influence of entropy fluctuations on the interaction of turbulence with a shock wave
,”
J. Fluid Mech.
334
,
353
(
1997
).
33.
J.
Larsson
and
S.
Lele
, “
Direct numerical simulation of canonical shock/turbulence interaction
,”
Phys. Fluids
21
,
126101
(
2009
).
34.
J. G.
Wouchuk
,
C.
Huete Ruiz de Lira
, and
A. L.
Velikovich
, “
Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field
,”
Phys. Rev. E
79
,
066315
(
2009
).
35.
C.
Huete Ruiz de Lira
, “
Turbulence generation by a shock wave interacting with a random density inhomogeneity field
,”
Phys. Scr.
2010
(
142
),
014022
.
36.
C.
Huete
,
J. G.
Wouchuk
,
B.
Canaud
, and
A. L.
Velikovich
, “
Analytical linear theory for the shock and re-shock of isotropic density inhomogeneities
,”
J. Fluid Mech.
700
,
214
(
2012
).
37.
J. G.
Wouchuk
and
F.
Cobos-Campos
, “
Linear theory of Richtmyer–Meshkov like flows
,”
Plasma Phys. Controlled Fusion
59
,
014033
(
2017
).
38.
S. P.
Dyakov
, “
On the stability of shock waves
,”
Zh. Eksp. Teor. Fiz.
27
,
288
(
1954
).
39.
A. V.
Konyukhov
,
A. P.
Likhachev
,
V. E.
Fortov
,
S. I.
Anisimov
, and
A. M.
Oparin
, “
Stability and ambiguous representation of shock wave discontinuity in thermodynamically nonideal media
,”
JETP Lett.
90
(
1
),
25
(
2009
).
40.
A. V.
Konyukhov
,
A. P.
Likhachev
,
V. E.
Fortov
,
K. V.
Khishchenko
,
S. I.
Anisimov
,
A. M.
Oparin
, and
I. V.
Lomonosov
, “
On the neutral stability of a shock wave in real media
,”
JETP Lett.
90
(
1
),
18
(
2009
).
41.
N. M.
Kuznetsov
, “
Stability of shock waves
,”
Sov. Phys. Usp.
32
,
993
(
1989
).
42.
G. I.
Kanel
,
S. V.
Razorenov
, and
V. E.
Fortov
,
Shock-Wave Phenomena and the Properties of Condensed Matter
(
Springer
,
New York
,
2004
).
43.
D. S.
Clark
 et al., “
Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
,”
Phys. Plasmas
23
,
056302
(
2016
).
44.
A. V.
Andriyash
,
M. V.
Astashkin
,
V. K.
Baranov
 et al., “
Application of photon Doppler velocimetry for characterization of ejecta from shock-loaded samples
,”
J. Appl. Phys.
123
,
243102
(
2018
).
45.
S. I.
Blinnikov
 et al., “
Dynamics of supernova bounce in laboratory
,”
Phys. Rev. E
99
,
033102
(
2019
).
46.
D. K.
Ilnitsky
,
K. E.
Gorodnichev
,
A. A.
Serezhkin
,
S. E.
Kuratov
 et al., “
A viscosity effect on development of instabilities at the interface between impacted plates
,”
Phys. Scr.
94
,
074003
(
2019
).
47.
E. I.
Zababakhin
,
Some Issues of Gasdynamics of Explosion
(
RFNC-VNIITF
,
Snezhinsk
1997
) (in Russian).
48.
J. W.
Jacobs
and
I.
Catton
, “
Three-dimensional Rayleigh-Taylor instability Part 1. Weakly nonlinear theory
,”
J. Fluid Mech.
187
,
329
(
1988
).
49.
M.
Berning
and
A. M.
Rubenchik
, “
A weakly nonlinear theory for the dynamical Rayleigh–Taylor instability
,”
Phys. Fluids
10
(
7
),
1564
(
1998
).
50.
Ya. B.
Zeldovich
and
Yu. P.
Raizer
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
(
Academic Press
,
New York
,
1967
).
51.
I. S.
Menshov
and
P. P.
Zakharov
, “
On the composite Riemann problem for multi-material fluid flows
,”
Int. J. Numer. Methods Fluids
76
(
2
),
109
(
2014
).
52.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon Press
,
New York
,
1987
).
53.
K. E.
Gorodnichev
,
S. E.
Kuratov
, “
Perturbations development in the colliding plates system
,”
VANT. Ser. Mat. Mod. Phys. Proc.
2
,
37
(
2013
) (in Russian).
54.
K. E.
Gorodnichev
,
S. E.
Kuratov
,
I. S.
Menshov
,
A. A.
Serezhkin
,
P. P.
Zakharov
, “
Disturbance evolution in the shock impact of a density non-uniform medium
,”
Math. Modell.
29
(
3
),
95
(
2016
) (in Russian).
55.
K. E.
Gorodnichev
,
S. E.
Kuratov
, and
E. E.
Gorodnichev
, “
Nonlinear interaction of a shock wave with an anisotropic entropy perturbation field
,”
J. Phys.: Conf. Ser.
788
,
012041
(
2017
).
You do not currently have access to this content.