A large spherical bubble rising in quiescent liquid generally leads to the formation of a toroidal bubble (central breakup). In this paper, we investigate the bubble dynamics during the central breakup process using the three dimensional Volume of Fluid method implemented in OpenFOAM. The potential energy of the large bubble is converted into the kinetic energy of the liquid jet, resulting in the formation of the toroidal bubble. Before the central breakup of the bubble, a high pressure zone is formed on the top of the bubble due to the collision of the liquid jet with the top of the bubble. We report for the first time that a protrusion is formed on the top of the toroidal bubble for a large spherical bubble rising in quiescent liquid. The velocity of the gas inside the toroidal bubble around the liquid jet is much faster than that in other places after the central breakup, which leads to the formation of the protrusion against the restriction of the surface tension force. We find that the bubble size, liquid viscosity, and density can influence the formation of the toroidal bubble, while the influence of surface tension is negligible. We summarize the above influencing factors into two dimensionless numbers: Galilei (Ga) number and Eötvös number (Eo). In the end, we discover a simple linear relation between the jet Reynolds number and the Ga number by analyzing all numerical experiments.

1.
B.
Aboulhasanzadeh
and
G.
Tryggvason
, “
Effect of bubble interactions on mass transfer in bubbly flow
,”
Int. J. Heat Mass Transfer
79
,
390
396
(
2014
).
2.
M. K.
Tripathi
,
A.
Premlata
,
K. C.
Sahu
, and
R.
Govindarajan
, “
Two initially spherical bubbles rising in quiescent liquid
,”
Phys. Rev. Fluids
2
,
073601
(
2017
).
3.
D.
Bhaga
and
M.
Weber
, “
Bubbles in viscous liquids: Shapes, wakes and velocities
,”
J. Fluid Mech.
105
,
61
85
(
1981
).
4.
J.
Landel
,
C.
Cossu
, and
C.
Caulfield
, “
Spherical cap bubbles with a toroidal bubbly wake
,”
Phys. Fluids
20
,
122101
(
2008
).
5.
M. K.
Tripathi
,
K. C.
Sahu
, and
R.
Govindarajan
, “
Dynamics of an initially spherical bubble rising in quiescent liquid
,”
Nat. Commun.
6
,
6268
(
2015
).
6.
J. C.
Cano-Lozano
,
C.
Martinez-Bazan
,
J.
Magnaudet
, and
J.
Tchoufag
, “
Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability
,”
Phys. Rev. Fluids
1
,
053604
(
2016
).
7.
D.
Sharaf
,
A.
Premlata
,
M. K.
Tripathi
,
B.
Karri
, and
K. C.
Sahu
, “
Shapes and paths of an air bubble rising in quiescent liquids
,”
Phys. Fluids
29
(
12
),
122104
(
2017
).
8.
A. H.
Charin
,
P. L.
Lage
,
L. F. L.
Silva
,
Ž.
Tuković
, and
H.
Jasak
, “
On the dynamic behavior of rising droplets
,”
Int. J. Multiphase Flow
110
,
165
178
(
2019
).
9.
M.
Gumulya
,
J. B.
Joshi
,
R. P.
Utikar
,
G. M.
Evans
, and
V.
Pareek
, “
Bubbles in viscous liquids: Time dependent behaviour and wake characteristics
,”
Chem. Eng. Sci.
144
,
298
309
(
2016
).
10.
M.
Ohta
,
T.
Imura
,
Y.
Yoshida
, and
M.
Sussman
, “
A computational study of the effect of initial bubble conditions on the motion of a gas bubble rising in viscous liquids
,”
Int. J. Multiphase Flow
31
,
223
237
(
2005
).
11.
T.
Bonometti
and
J.
Magnaudet
, “
Transition from spherical cap to toroidal bubbles
,”
Phys. Fluids
18
,
052102
(
2006
).
12.
E.
Klaseboer
,
K.
Hung
,
C.
Wang
,
C.
Wang
,
B.
Khoo
,
P.
Boyce
,
S.
Debono
, and
H.
Charlier
, “
Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure
,”
J. Fluid Mech.
537
,
387
413
(
2005
).
13.
A.
Zhang
,
S.
Li
, and
J.
Cui
, “
Study on splitting of a toroidal bubble near a rigid boundary
,”
Phys. Fluids
27
,
062102
(
2015
).
14.
T.
Séon
and
A.
Antkowiak
, “
Large bubble rupture sparks fast liquid jet
,”
Phys. Rev. Lett.
109
,
014501
(
2012
).
15.
T.
Séon
and
A.
Antkowiak
, “
Jets in viscous bubbles
,”
Phys. Fluids
23
,
091103
(
2011
).
16.
A.
Zhang
,
P.
Cui
,
J.
Cui
, and
Q.
Wang
, “
Experimental study on bubble dynamics subject to buoyancy
,”
J. Fluid Mech.
776
,
137
160
(
2015
).
17.
L.
Liu
,
X.
Yao
,
A.
Zhang
, and
Y.
Chen
, “
Numerical analysis of the jet stage of bubble near a solid wall using a front tracking method
,”
Phys. Fluids
29
,
012105
(
2017
).
18.
T.
Li
,
A.-M.
Zhang
,
S.-P.
Wang
,
S.
Li
, and
W.-T.
Liu
, “
Bubble interactions and bursting behaviors near a free surface
,”
Phys. Fluids
31
,
042104
(
2019
).
19.
L.
Chen
,
S. V.
Garimella
,
J. A.
Reizes
, and
E.
Leonardi
, “
The development of a bubble rising in a viscous liquid
,”
J. Fluid Mech.
387
,
61
96
(
1999
).
20.
J.
Roenby
,
H.
Bredmose
, and
H.
Jasak
, “
A computational method for sharp interface advection
,”
R. Soc. Open Sci.
3
,
160405
(
2016
).
21.
H. G.
Weller
,
G.
Tabor
,
H.
Jasak
, and
C.
Fureby
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
,
620
631
(
1998
).
22.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
23.
H.
Scheufler
and
J.
Roenby
, “
Accurate and efficient surface reconstruction from volume fraction data on general meshes
,”
J. Comput. Phys.
383
,
1
23
(
2019
).
24.
S.-R.
Hysing
,
S.
Turek
,
D.
Kuzmin
,
N.
Parolini
,
E.
Burman
,
S.
Ganesan
, and
L.
Tobiska
, “
Quantitative benchmark computations of two-dimensional bubble dynamics
,”
Int. J. Numer. Methods Fluids
60
,
1259
1288
(
2009
).
25.
J.
Klostermann
,
K.
Schaake
, and
R.
Schwarze
, “
Numerical simulation of a single rising bubble by VOF with surface compression
,”
Int. J. Numer. Methods Fluids
71
,
960
982
(
2013
).
26.
T.
Yamamoto
,
Y.
Okano
, and
S.
Dost
, “
Validation of the S-CLSVOF method with the density-scaled balanced continuum surface force model in multiphase systems coupled with thermocapillary flows
,”
Int. J. Numer. Methods Fluids
83
,
223
244
(
2017
).
You do not currently have access to this content.