Hydrogels with or without chemical cross-linking have been studied and used for biomedical applications, such as tissue repair, surgical sealants, and three dimensional biofabrication. These materials often undergo a physical sol–gel or gel–sol transition between room and body temperatures and can also be chemically cross-linked at these temperatures to give dimensional stability. However, few studies have clearly shown the effect of heating/cooling rates on such transitions. Moreover, only a little is known about the effect of cross-linking temperature or the state on the modulus after cross-linking. We have established rheological methods to study these effects, an approach to determine transition temperatures, and a method to prevent sample drying during measurements. All the rheological measurements were performed minimizing the normal stress build-up to compensate for the shrinking and expansion due to temperature and phase changes. We chemically modified gelatin to give gelatin methacryloyl and determined the degree of methacryloylation by proton nuclear magnetic resonance. Using the gelatin methacryloyl as an example, we have found that the gel state or lower temperature can give more rigid gelatin-based polymers by cross-linking under visible light than the sol state or higher temperature. These methods and results can guide researchers to perform appropriate studies on material design and map applications, such as the optimal operating temperature of hydrogels for biomedical applications. We have also found that gelation temperatures strongly depend on the cooling rate, while solation temperatures are independent of the heating rate.

1.
R.
Parhi
, “
Cross-linked hydrogel for pharmaceutical applications: A review
,”
Adv. Pharm. Bull.
7
(
4
),
515
530
(
2017
).
2.
J.
Michalek
,
M.
Pradny
,
K.
Dusek
,
M.
Duskova
, and
R.
Hobzova
,
Hydrogel in Biology and Medicine
(
Nova Science Publishers
,
New York
,
2010
).
3.
S.
Rimmer
,
Biomedical Hydrogels; Biochemistry, Manufacture and Medical Applications
(
Woodhead Publishing
,
Oxford
,
2011
).
4.
R. M.
Ottenbrite
,
K.
Park
, and
T.
Okano
,
Biomedical Applications of Hydrogels Handbook
(
Springer
,
New York
,
2010
).
5.
R.
Barbucci
,
Hydrogels; Biological Properties and Applications
(
Springer
,
Milan
,
2009
).
6.
S.
Kalia
,
Polymeric Hydrogels as Smart Biomaterials
(
Springer
,
Cham
,
2016
).
7.
D.
DeRossi
,
K.
Kajiwara
,
Y.
Osada
, and
A.
Yamauchi
,
Polymer Gels; Fundamentals and Biomedical Applications
(
Plenum Press
,
New York
,
1989
).
8.
S.
Van Vlierberghe
,
P.
Dubruel
, and
E.
Schacht
, “
Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review
,”
Biomacromolecules
12
,
1387
1408
(
2011
).
9.
A. I. V. D.
Bulcke
,
B.
Bogdanov
,
N. D.
Rooze
,
E. H.
Schacht
,
M.
Cornelissen
, and
H.
Berghmans
, “
Structural and rheological properties of methacrylamide modified gelatin hydrogels
,”
Biomacromolecules
1
,
31
38
(
2000
).
10.
S. B.
Ross-Murphy
, “
Structure and rheology of gelatin gels: recent progress
,”
polymer
33
(
12
),
2622
2627
(
1992
).
11.
C.
Yu
,
W.
Zhu
,
B.
Sun
,
D.
Mei
,
M.
Gou
, and
S.
Chen
, “
Modulating physical, chemical, and biological properties in 3D printing for tissue engineering applications
,”
Appl. Phys. Rev.
5
,
041107
(
2018
).
12.
H.
Shirahama
,
B. H.
Lee
,
L. P.
Tan
, and
N.-J.
Cho
, “
Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis
,”
Sci. Rep.
6
,
31036
(
2016
).
13.
Y.
Chen
,
R.
Lin
,
H.
Qi
,
Y.
Yang
,
H.
Bae
,
J. M.
Melero-Martin
, and
A.
Khademhosseini
, “
Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels
,”
Adv. Funct. Mater.
22
,
2027
2039
(
2012
).
14.
K.
Yue
,
G. T.-d.
Santiago
,
M. M.
Alvarez
,
A.
Tamayol
,
N.
Annabi
, and
A.
Khademhosseini
, “
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels
,”
Biomaterials
73
,
254
271
(
2015
).
15.
B. J.
Klotz
,
D.
Gawlitta
,
A. J.
Rosenberg
,
J.
Malda
, and
F. P.
Melchels
, “
Gelatin-methacryloyl hydrogels: Towards biofabrication-based tissue repair
,”
Trends Biotechnol.
34
(
5
),
394
407
(
2016
).
16.
M.
Rizwan
,
G. S.
Peh
,
H.-P.
Ang
,
N. C.
Lwin
,
K.
Adnan
,
J. S.
Mehta
,
W. S.
Tan
, and
E. K.
Yim
, “
Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications
,”
Biomaterials
120
,
139
154
(
2017
).
17.
L.
Rebers
,
T.
Granse
,
G. E.
Tovar
,
A.
Southan
, and
K.
Borchers
, “
Physical interactions strengthen chemical gelatin methacryloyl gels
,”
Gels
5
(
1
),
4
(
2019
).
18.
W.
Schuurman
,
A.
Levett
,
M. W.
Pot
,
R.
van Weeren
,
W. J. A.
Dhert
,
D. W.
Hutmacher
,
F. P. W.
Melchels
,
T. J.
Klein
, and
J.
Malda
, “
Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs
,”
Macromol. Biosci.
13
,
551
561
(
2013
).
19.
B. H.
Lee
,
N.
Lum
,
L. Y.
Seow
,
Q.
Lim
, and
L. P.
Tan
, “
Synthesis and characterization of types A and B gelatin methacryloyl for bioink applications
,”
Materials
9
,
797
(
2016
).
20.
C.
Claaßen
,
M. H.
Claaßen
,
V.
Truffault
,
L.
Sewald
,
G. E. M.
Tovar
,
K.
Borchers
, and
A.
Southan
, “
Quantification of substitution of gelatin methacryloyl: Best practice and current pitfalls
,”
Biomacromolecules
19
,
42
52
(
2018
).
21.
R.
Hudson
,
A.
Holder
,
K.
Hawkins
,
P. R.
Williams
, and
D.
Curtis
, “
An enhanced rheometer inertia correction procedure (ERIC) for the study of gelling systems using combined motor-transducer rheometers
,”
Phys. Fluids
29
,
121602
(
2017
).
22.
K. A.
Vakalopoulos
,
Z.
Wu
,
L.
Kroese
,
G.-J.
Kleinrensink
,
J.
Jeekel
,
R.
Vendamme
,
D.
Dodou
, and
J. F.
Lange
, “
Mechanical strength and rheological properties of tissue adhesives with regard to colorectal anastomosis
,”
Ann. Surg.
261
(
2
),
323
(
2015
).
23.
J.
Sato
and
V.
Breedveld
, “
Evaporation blocker for cone-plate rheometry of volatilee samples
,”
Appl. Rheol.
15
,
390
397
(
2005
).
24.
R. A.
Pouliot
,
A.
Link
,
N. S.
Mikhaiel
,
M. B.
Schneck
,
M. S.
Valentine
,
F. J. K.
Gninzeko
,
J. A.
Herbert
,
M.
Sakagami
, and
R.
Heise
, “
Development and characterization of a naturally derived lung extracellular matrix hydrogel
,”
J. Biomed. Mater. Res., Part A
104
,
1922
1935
(
2016
).
25.
P.
Aprelev
,
B.
McKinney
,
C.
Walls
, and
K. G.
Kornev
, “
Magnetic stage with environmental control for optical microscopy and high-speed nano- and microrheology
,”
Phys. Fluids
29
,
072001
(
2017
).
26.
H. E.
Park
and
J. M.
Dealy
, “
Effects of pressure and supercritical fluids on the viscosity of polyethylene
,”
Macromolecules
39
,
5438
5452
(
2006
).
27.
H. H.
Winter
, “
Gel point
,” in
Encyclopedia of Polymer Science and Technology
, 4th ed. (
John Wiley & Sons
,
2016
).
28.
L.
Sewald
,
C.
Claaßen
,
T.
Götz
,
M. H.
Claaßen
,
V.
Truffault
,
G. E. M.
Tovar
,
A.
Southan
, and
K.
Borchers
, “
Beyond the modification degree: Impact of raw material on physicochemical properties of gelatin type A and type B methacryloyls
,”
Macromol. Biosci.
18
,
1800168
(
2018
).
29.
D.
Khandal
,
B.
Riedl
,
J. R.
Tavares
,
J.
Carreau
, and
M.-C.
Heuzey
, “
Tailoring cellulose nanocrystals rheological behavior in aqueous suspensions through surface functionalization with polyethyleneimine
,”
Phys. Fluids
31
,
021207
(
2019
).
30.
E.
Hoch
,
C.
Schuh
,
T.
Hirth
,
G. E. M.
Tovar
, and
K.
Borchers
, “
Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation
,”
J. Mater. Sci.: Mater. Med.
23
,
2607
2617
(
2012
).
31.
B. H.
Lee
,
H.
Shirahama
,
N.-J.
Cho
, and
L. P.
Tan
, “
Efficient and controllable synthesis of highly substituted gelatin methacrylamide for mechanically stiff hydrogels
,”
RSC Adv.
5
,
106094
106097
(
2015
).
32.
X.
Li
,
S.
Chen
,
J.
Li
,
X.
Wang
, and
J.
Zhang
, “
3D culture of chondrocytes in gelatin hydrogels with different dtiffness
,”
Polymers
8
(
8
),
269
(
2016
).
33.
E.
Hoch
,
T.
Hirth
,
G. E. M.
Tovar
, and
K.
Borchers
, “
Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting
,”
J. Mater. Chem. B
1
,
5675
5685
(
2013
).
34.
A.
Muench
,
C. P.
Please
, and
B.
Wagner
, “
Spin coating of an evaporating polymer solution
,”
Phys. Fluids
23
(
10
),
102101
(
2011
).
35.
V.
Garzo
and
M. L.
de Haro
, “
Kinetic models for diffusion in shear flow
,”
Phys. Fluids A
4
(
5
),
1057
1069
(
1992
).
36.
J.
Giacomin
,
R.
Bird
,
L.
Johnson
, and
A.
Mix
, “
Large-amplitude oscillatory shear flow from the corotational Maxwell model
,”
J. Non-Newtonian Fluid Mech.
166
,
1081
1099
(
2011
).
37.
L.
Martinetti
and
R. H.
Ewoldt
, “
Time-strain separability in medium-amplitude oscillatory shear
,”
Phys. Fluids
31
,
021213
(
2019
).
38.
C. H.
Lee
,
Y.
Lu
, and
A. Q.
Shen
, “
Evaporation induced self assembly and rheology change during sol-gel coating
,”
Phys. Fluids
18
,
052105
(
2006
).
39.
T.-H.
Kim
,
J.
Kim
, and
H.-Y.
Kim
, “
Evaporation-driven clustering of microscale pillars
,”
Phys. Fluids
28
(
2
),
022003
(
2016
).
40.
F.
Hidri
,
N.
Sghaier
,
H.
Eloukabi
,
M.
Prat
, and
S. B.
Nasrallah
, “
Porous medium coffee ring effect and other factors affecting the first crystallisation time of sodium chloride at the surface of a drying porous medium
,”
Phys. Fluids
25
,
127101
(
2013
).
41.
C. N.
Kaplan
,
N.
Wu
,
S.
Mandre
,
J.
Aizenberg
, and
L.
Mahadevan
, “
Dynamics of evaporative colloidal patterning
,”
Phys. Fluids
27
,
092105
(
2015
).
42.
J.
Fan
,
H.
Wu
, and
F.
Wang
, “
Evaporation-driven liquid flow through nanochannels
,”
Phys. Fluids
32
,
012001
(
2020
).
43.
Y.
Ichikawa
,
K.
Yamamoto
,
M.
Yamamoto
, and
M.
Motosuke
, “
Near-hydrophobic-surface flow measurement by micro-3D PTV for evaluation of drag reduction
,”
Phys. Fluids
29
,
092005
(
2017
).
44.
Y.
Liu
and
R.
Pandey
, “
Sol–gel phase transitions in thermoreversible gels: Onset of gelation and melting
,”
J. Chem. Phys.
105
(
2
),
825
836
(
1996
).
45.
H. B.
Bohidar
and
S. S.
Jena
, “
Kinetics of sol–gel transition in thermoreversible gelation of gelatin
,”
J. Chem. Phys.
98
(
11
),
8970
8977
(
1993
).
46.
D.
Levy
and
M.
Zayat
,
The Sol–Gel Handbook
(
Wiley VCH
,
Weinheim
,
2015
).
47.
H. E.
Park
,
J. M.
Dealy
,
G. R.
Marchand
,
J.
Wang
,
S.
Li
, and
R. A.
Register
, “
Rheology and structure of molten, olefin multiblock copolymers
,”
Macromolecules
43
,
6789
6799
(
2010
).
48.
A.
Giacomin
,
R.
Bird
,
C.
Aumnate
,
A.
Mertz
, and
A. M. A. M.
Schmalzer
, “
Viscous heating in large-amplitude oscillatory shear flow
,”
Phys. Fluids
24
(
10
),
103101
(
2012
).
49.
H. E.
Park
,
S. T.
Lim
,
H. M.
Laun
, and
J. M.
Dealy
, “
Measurement of pressure coefficient of melt viscosity: Drag flow versus capillary flow
,”
Rheol. Acta
47
,
1023
1038
(
2008
).
50.
M.
Nooranidoost
,
D.
Izbassarov
,
S.
Tasoglu
, and
M.
Muradoglu
, “
A computational study of droplet-based bioprinting: Effects of viscoelasticity
,”
Phys. Fluids
31
,
081901
(
2019
).
51.
J. T.
Cirulis
,
F. W.
Keeley
, and
D. F.
James
, “
Viscoelastic properties and gelation of an elastin-like polypeptide
,”
J. Rheol.
53
(
5
),
1215
1228
(
2009
).
52.
J. M.
Dealy
and
J.
Wang
,
Melt Rheology and its Applications in the Plastics Industry
, 2nd ed. (
Springer
,
Dordrecht
,
2019
), p.
80
.
53.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
, 3rd ed. (
John Wiley & Sons
,
New York
,
1980
), p.
530
.
54.
C.
McIlroy
, “
A fundamental rule: Determining the importance of flow prior to polymer crystallization
,”
Phys. Fluids
31
,
113103
(
2019
).
55.
H. T.
Peng
and
P. N.
Shek
, “
Novel wound sealants: Biomaterials and applications
,”
Expert Rev. Med. Devices
7
(
5
),
639
659
(
2010
).
56.
E.
Biazar
,
M.
Najafi S.
,
S.
Heidari K.
,
M.
Yazdankhah
,
A.
Rafiei
, and
D.
Biazar
, “
3D bio-printing technology for body tissues and organs regeneration
,”
J. Med. Eng. Technol.
42
(
3)
,
187
202
(
2018
).
57.
M. J.
Lerman
,
J.
Lembong
,
G.
Gillen
, and
J. P.
Fisher
, “
3D printing in cell culture systems and medical applications
,”
Appl. Phys. Rev.
5
,
041109
(
2018
).
58.
L. S.
Nair
,
C. T.
Laurencin
, and
M.
Tandon
, “
Injectable hydrogels as biomaterials
,” in
Advanced Biomaterials; Fundamentals, Processing, and Applications
(
John Wiley & Sons
,
Hoboken
,
2000
).
59.
S.
Asliyuce
,
L.
Uzun
,
A. Y.
Rad
,
S.
Unal
,
R.
Say
, and
A.
Denizli
, “
Molecular imprinting based composite cryogel membranes for purification of anti-hepatitis B surface antibody by fast protein liquid chromatography
,”
J. Chromatogr. B
889-890
,
95
102
(
2012
).
60.
M.
Sirousazar
,
M.
Forough
,
K.
Farhadi
,
Y.
Shaabani
, and
R.
Molaei
, “
Hydrogels: Properties, preparation, characterization and biomedical applications in tissue engineering, drug delivery and wound care
,” in
Advanced Healthcare Materials
(
John Wiley & Sons
,
Hoboken
,
2014
).
61.
H.
Jianga
,
W.
Sua
,
P. T.
Mathera
, and
T.
Bunning
, “
Rheology of highly swollen chitosan/polyacrylate hydrogels
,”
Polymer
40
,
4593
4602
(
1999
).
62.
J. M.
Dealy
,
D. J.
Read
, and
R. D.
Larson
,
Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again
, 2nd ed. (
Hanser Publications
,
Munich
,
2018
), p.
429
.
You do not currently have access to this content.