This paper describes the dynamic mechanisms of bubbles and droplets moving in quiescent flows. An improved diffuse interface method is adopted to capture the interfacial evolution of a two-phase flow, which can effectively suppress the phenomenon of interface dispersion. Preliminary simulations of a circular bubble/droplet moving from rest are first performed, and then, the interface shapes and vorticity distributions are compared to study the differences in the deformation mechanisms of bubbles and droplets. The processes of bubbles and droplets formed from a submerged orifice are, then, explored. The bubble formation process can be divided into nucleation, expansion, and detachment stages; for droplets, the characteristics of chaotic drip flow are considered. The interface shape and vorticity distribution of bubbles/droplets are analyzed, and the effects of the Weber number and Bond number on the detached bubble size and droplet flow regime are investigated. The effect of the contact angle on bubble formation is also examined. To reduce the detached bubble size, an improved method using an inserted orifice is proposed and confirmed. The inserted orifice is shown to have almost no effect on the formation of droplets, and the bubble/droplet formation and motion are independent of the inserted orifice length.

1.
R.
Hughes
and
E.
Gilliland
, “
The mechanics of drops
,”
Chem. Eng. Prog.
48
,
497
504
(
1952
).
2.
T.
Taylor
and
A.
Acrivos
, “
On the deformation and drag of a falling viscous drop at low Reynolds number
,”
J. Fluid Mech.
18
,
466
476
(
1964
).
3.
E.
Gaddis
and
A.
Vogelpohl
, “
Bubble formation in quiescent liquids under constant flow conditions
,”
Chem. Eng. Sci.
41
,
97
105
(
1986
).
4.
H. N.
Oguz
and
A.
Prosperetti
, “
Dynamics of bubble growth and detachment from a needle
,”
J. Fluid Mech.
257
,
111
145
(
1993
).
5.
M.
Nooranidoost
,
D.
Izbassarov
, and
M.
Muradoglu
, “
Droplet formation in a flow focusing configuration: Effects of viscoelasticity
,”
Phys. Fluids
28
,
123102
(
2016
).
6.
M. P.
Borthakur
,
G.
Biswas
, and
D.
Bandyopadhyay
, “
Dynamics of drop formation from submerged orifices under the influence of electric field
,”
Phys. Fluids
30
,
122104
(
2018
).
7.
G. Q.
Chen
,
X.
Huang
,
A. M.
Zhang
, and
S. P.
Wang
, “
Simulation of three-dimensional bubble formation and interaction using the high-density-ratio lattice Boltzmann method
,”
Phys. Fluids
31
,
027102
(
2019
).
8.
D.
Legendre
,
R.
Zenit
, and
J. R.
Velez-Cordero
, “
On the deformation of gas bubbles in liquids
,”
Phys. Fluids
24
,
043303
(
2012
).
9.
G.
Brenn
,
V.
Kolobaric
, and
F.
Durst
, “
Shape oscillations and path transition of bubbles rising in a model bubble column
,”
Chem. Eng. Sci.
61
,
3795
3805
(
2006
).
10.
A. H.
Abdel-Alim
and
A. E.
Hamielec
, “
A theoretical and experimental investigation of the effect of internal circulation on the drag of spherical droplets falling at terminal velocity in liquid media
,”
Ind. Eng. Chem. Fund.
14
,
308
312
(
1975
).
11.
E. D.
Wilkes
,
S. D.
Phillips
and
O. A.
Basaran
, “
Computational and experimental analysis of dynamics of drop formation
,”
Phys. Fluids
11
,
3577
(
1999
).
12.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
13.
M.
Sussman
,
P.
Smereka
, and
S.
Osher
, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J. Comput. Phys.
114
,
146
159
(
1994
).
14.
S.
Osher
and
J. A.
Sethian
, “
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations
,”
J. Comput. Phys.
79
,
12
49
(
1988
).
15.
M. E.
Gurtin
,
D.
Polignone
, and
J.
Vinals
, “
Two-phase binary fluids and immiscible fluids described by an order parameter
,”
Math. Models Methods Appl. Sci.
6
,
815
831
(
1996
).
16.
T. W.
Zhang
,
J.
Wu
, and
X. J.
Lin
, “
An interface-compressed diffuse interface method and its application for multiphase flows
,”
Phys. Fluids
31
,
122102
(
2019
).
17.
S.
Anwar
, “
Lattice Boltzmann modeling of buoyant rise of single and multiple bubbles
,”
Comput. Fluids
88
,
430
439
(
2013
).
18.
M. K.
Tripathi
,
K. C.
Sahu
, and
R.
Govindarajan
, “
Dynamics of an initially spherical bubble rising in quiescent liquid
,”
Nat. Commun.
6
,
6268
(
2015
).
19.
M.
Jalaal
and
K.
Mehravaran
, “
Fragmentation of falling liquid droplets in bag breakup model
,”
Int. J. Multiphase Flow
47
,
115
132
(
2012
).
20.
M.
Balla
,
M. K.
Tripathi
, and
K. C.
Sahu
, “
Shape oscillations of a nonspherical water droplet
,”
Phys. Rev. E
99
,
023107
(
2019
).
21.
A. A.
Kulkarni
and
J. B.
Joshi
, “
Bubble formation and bubble rise velocity in gas-liquid systems: A review
,”
Ind. Eng. Chem. Res.
44
,
5873
5931
(
2005
).
22.
I.
Chakraborty
,
G.
Biswas
, and
P. S.
Ghoshdastidar
, “
Bubble generation in quiescent and co-flowing liquids
,”
Int. J. Heat Mass Transfer
54
,
4673
4688
(
2011
).
23.
J.
Yuan
,
Y.
Li
, and
Y.
Zhou
, “
Effect of contact angle on bubble formation at submerged orifices
,”
J. Mater. Sci.
49
,
8084
8094
(
2014
).
24.
A. V.
Byakova
,
S. V.
Gnyloskurenko
,
T.
Nakamura
, and
O. I.
Raychenko
, “
Influence of wetting conditions on bubble formation at orifice in an inviscid liquid: Mechanism of bubble evolution
,”
Colloids Surf., A
218
,
73
87
(
2003
).
25.
I.
Chakraborty
,
G.
Biswas
,
S.
Polepalle
, and
P. S.
Ghoshdastidar
, “
Bubble formation and dynamics in a quiescent high-density liquid
,”
AIChE J.
61
,
3996
4012
(
2015
).
26.
I.
Chakraborty
,
G.
Biswas
, and
P. S.
Ghoshdastidar
, “
A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids
,”
Int. J. Heat Mass Transfer
58
,
240
259
(
2013
).
27.
T. W.
Shield
,
D. B.
Bogy
, and
F. E.
Talke
, “
Drop formation by DOD ink-jet nozzles: A comparison of experiment and numerical simulation
,”
IBM J. Res. Dev.
31
,
96
110
(
1987
).
28.
M. J.
Wood
,
F.
Aristizabal
,
M.
Coady
,
K.
Nielson
,
P. J.
Ragogna
, and
A. M.
Kietzig
, “
The precise and accurate production of millimetric water droplets using a superhydrophobic generating apparatus
,”
Phys. Fluids
30
,
027104
(
2018
).
29.
C. A.
MacLeod
and
C. J.
Radke
, “
A growing drop technique for measuring dynamic interfacial tension
,”
J. Colloid Interface Sci.
160
,
435
448
(
1993
).
30.
X.
Zhang
and
O. A.
Basaran
, “
An experimental study of dynamics of drop formation
,”
Phys. Fluids
7
,
1184
1203
(
1995
).
31.
C.
Clanet
and
J. C.
Lasheras
, “
Transition from dripping to jetting
,”
J. Fluid Mech.
383
,
307
326
(
1999
).
32.
A.
D’Innocenzo
,
F.
Paladini
, and
L.
Renna
, “
Asymmetrical dripping
,”
Phys. Rev. E
69
,
046204
(
2004
).
33.
M. P.
Borthakur
,
G.
Biswas
, and
D.
Bandyopadhyay
, “
Formation of liquid drops at an orifice and dynamics of pinch-off in liquid jets
,”
Phys. Rev. E
96
,
013115
(
2017
).
34.
S. P.
Lin
and
R. D.
Reitz
, “
Drop and spray formation from a liquid jet
,”
Annu. Rev. Fluid. Mech.
30
,
85
105
(
1998
).
35.
A. U.
Chen
,
P. K.
Notz
, and
O. A.
Basaran
, “
Computational and experimental analysis of pinch-off and scaling
,”
Phys. Rev. Lett.
88
,
174501
(
2002
).
36.
H. J.
Subramani
,
H. K.
Yeoh
,
R.
Suryo
,
Q.
Xu
,
B.
Ambravaneswaran
, and
O. A.
Basaran
, “
Simplicity and complexity in a dripping faucet
,”
Phys. Fluids
18
,
032106
(
2006
).
37.
K.
Bergeles
,
Y.
Hardalupas
, and
A. M. K. P.
Taylor
, “
On the transient flow inside and around a deforming millimetre class oil droplet falling under the action of gravity in stagnant air
,”
Phys. Fluids
30
,
013305
(
2018
).
38.
J. D.
van der Waals
, “
The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density
,”
J. Stat. Phys.
20
,
200
244
(
1979
).
39.
H.
Ding
,
P. D. M.
Spelt
, and
C.
Shu
, “
Diffuse interface model for incompressible two-phase flows with large density ratios
.
J. Comput. Phys.
226
,
2078
2095
(
2007
).
40.
J.
Kim
, “
A continuous surface tension force formulation for diffuse-interface models
,”
J. Comput. Phys.
204
,
784
804
(
2005
).
41.
D.
Jacqmin
, “
An energy approach to the continuum surface tension method
,” AIAA Paper No. 96-0858,
1996
.
42.
S.
Vafaei
and
D.
Wen
, “
Bubble formation on a submerged micronozzle
,”
J. Colloid Interface Sci.
343
,
291
297
(
2010
).
43.
C. M.
Rhie
and
W. L.
Chow
, “
A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation
,”
AIAA J.
21
,
1525
1532
(
1983
).
44.
B.
van Leer
, “
Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method
,”
J. Comput. Phys.
32
,
101
136
(
1979
).
45.
M. J.
Andrews
, “
Accurate computation of convective transport in transient two-phase flow
,”
Int. J. Numer. Methods Fluids
21
,
205
222
(
1995
).
46.
A.
Albadawi
,
D. B.
Donoghue
,
A. J.
Robinson
,
D. B.
Murray
, and
Y. M. C.
Delaure
, “
Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment
,”
Int. J. Multiphase Flow
53
,
11
28
(
2013
).
47.
A.
Ferrari
,
M.
Magnini
, and
J. R.
Thome
, “
A flexible coupled level set and volume of fluid (flexCLV) method to simulate microscale two-phase flow in non-uniform and unstructured meshes
,”
Int. J. Multiphase Flow
91
,
276
295
(
2017
).
48.
M. S.
Darwish
and
F.
Moukalled
, “
TVD schemes for unstructured grids
,”
Int. J. Heat Mass Transfer
46
,
599
611
(
2003
).
49.
S. T.
Thoroddsen
,
T. G.
Etoh
, and
K.
Takehara
, “
Experiments on bubble pinch-off
,”
Phys. Fluids
19
,
042101
(
2007
).
50.
L.
Amaya-Bower
and
T.
Lee
, “
Single bubble rising dynamics for moderate Reynolds number using Lattice Boltzmann Method
,”
Comput. Fluids.
39
,
1191
1207
(
2010
).
51.
P. H.
Chiu
and
Y. T.
Lin
, “
A conservative phase field method for solving incompressible two-phase flows
,”
J. Comput. Phys.
230
,
185
204
(
2011
).
52.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops and Particles
(
Academic Press
,
New York
,
1978
).
53.
W. B.
Wu
,
Y. L.
Liu
, and
A. M.
Zhang
, “
Numerical investigation of 3D bubble growth and detachment
,”
Ocean Eng.
138
,
86
104
(
2017
).
54.
I.
Chakraborty
,
M.
Rubio-Rubio
,
A.
Sevilla
, and
J. M.
Cordillo
, “
Numerical simulation of axisymmetric drop formation using a coupled level set and volume of fluid method
,”
Int. J. Multiphase Flow
84
,
54
65
(
2016
).
55.
H.
Wong
,
D.
Rumschitzki
, and
C.
Maldarelli
, “
Theory and experiment on the low-Reynolds-number expansion and contraction of a bubble pinned at a submerged tube tip
,”
J. Fluid Mech.
356
,
93
124
(
1998
).
You do not currently have access to this content.