Liquid drop impact on dry, solid surfaces has been studied to elucidate the role of control parameters, such as drop size, impact velocity, liquid properties, surface roughness, and wettability, on the mechanism of splashing phenomenon. It has been shown more recently that ambient gas plays a pivotal role in initiating the disintegration mechanisms leading to the ejection of secondary droplets from an impacting drop. Through systematic experiments, the role of target surface temperature in altering the morphology of a splash outcome of impacting fuel drops is investigated in the present work. It is observed that at elevated surface temperatures, the heated air film present very close to the hot surface suppresses splashing and consequently raises the splash threshold Weber number of the impacting fuel drop. For a given Weber number, the morphology of the impacting drop shifts from splashing to spreading with a rise in the surface temperature through an intermediate transition regime, characterized by the tendency of the liquid sheet to recontact the drop lamella without ejecting any secondary droplets. The experimental observations are compared with theoretical model predictions reported in the literature, and fair agreement is found in terms of both the observed splash suppression and the underlying mechanisms that govern the identified morphological regimes.

1.
M.
Rein
, “
Phenomena of liquid drop impact on solid and liquid surfaces
,”
Fluid Dyn. Res.
12
,
61
(
1993
).
2.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing
,”
Annu. Rev. Fluid Mech.
38
,
159
(
2006
).
3.
C.
Josserand
and
S. T.
Thoroddsen
, “
Drop impact on a solid surface
,”
Annu. Rev. Fluid Mech.
48
,
365
(
2016
).
4.
J.
Kim
, “
Spray cooling heat transfer: The state of the art
,”
Int. J. Heat Fluid Flow
28
,
753
(
2007
).
5.
D. B. V.
Dam
and
C. L.
Clerc
, “
Experimental study of the impact of an ink-jet printed droplet on a solid substrate
,”
Phys. Fluids
16
,
3403
(
2004
).
6.
B.
Derby
, “
Inkjet printing of functional and structural materials: Fluid property requirements, feature stability and resolution
,”
Annu. Rev. Mater. Res.
40
,
395
(
2010
).
7.
M.
Massinon
and
F.
Lebeau
, “
Experimental method for the assessment of agricultural spray retention based on high-speed imaging of drop impact on a synthetic superhydrophobic surface
,”
Biosyst. Eng.
112
,
56
(
2012
).
8.
C.
Zhang
and
H.
Liu
, “
Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing
,”
Phys. Fluids
28
,
062107
(
2016
).
9.
M.
Nooranidoost
,
D.
Izbassarov
,
S.
Tasoglu
, and
M.
Muradoglu
, “
A computational study of droplet-based bioprinting: Effects of viscoelasticity
,”
Phys. Fluids
31
,
081901
(
2019
).
10.
T.
Kondo
and
K.
Ando
, “
Simulation of high-speed droplet impact against a dry/wet rigid wall for understanding the mechanism of liquid jet cleaning
,”
Phys. Fluids
31
,
013303
(
2019
).
11.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Outcomes from a drop impact on solid surfaces
,”
Atomization Sprays
11
,
12
(
2001
).
12.
C. D.
Stow
and
M. G.
Hadfield
, “
An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface
,”
Proc. R. Soc. A
373
,
419
(
1981
).
13.
C.
Mundo
,
M.
Sommerfeld
, and
C.
Tropea
, “
Droplet-wall collisions: Experimental studies of the deformation and breakup process
,”
Int. J. Multiphase Flow
21
,
151
(
1995
).
14.
A. L.
Yarin
and
D. A.
Weiss
, “
Impact of drops on solid surfaces: Self-similar capillary waves, and splashing as a new type of kinematic discontinuity
,”
J. Fluid Mech.
283
,
141
(
1995
).
15.
R. L.
Vander Wal
,
G. M.
Berger
, and
S. D.
Mozes
, “
The splash/non-splash boundary upon a dry surface and thin fluid film
,”
Exp. Fluids
40
,
53
(
2006
).
16.
J.
Palacios
,
J.
Hernández
,
P.
Gómez
,
C.
Zanzi
, and
J.
López
, “
On the impact of viscous drops onto dry smooth surfaces
,”
Exp. Fluids
52
,
1449
(
2012
).
17.
L.
Xu
,
W. W.
Zhang
, and
S. R.
Nagel
, “
Drop splashing on a dry smooth surface
,”
Phys. Rev. Lett.
94
,
184505
(
2005
).
18.
L.
Xu
, “
Liquid drop splashing on smooth, rough, and textured surfaces
,”
Phys. Rev. E
75
,
056316
(
2007
).
19.
S. T.
Thoroddsen
, “
The ejecta sheet generated by the impact of a drop
,”
J. Fluid Mech.
451
,
373
(
2002
).
20.
M. M.
Driscoll
,
C. S.
Stevens
, and
S. R.
Nagel
, “
Thin film formation during splashing of viscous liquids
,”
Phys. Rev. E
82
,
036302
(
2010
).
21.
A.
Latka
, “
Thin-sheet creation and threshold pressures in drop splashing
,”
Soft Matter
13
,
740
(
2017
).
22.
C. S.
Stevens
,
A.
Latka
, and
S. R.
Nagel
, “
Comparison of splashing in high-and low-viscosity liquids
,”
Phys. Rev. E
89
,
063006
(
2014
).
23.
M.
Bussmann
,
S.
Chandra
, and
J.
Mostaghimi
, “
Modeling the splash of a droplet impacting a solid surface
,”
Phys. Fluids
12
,
3121
(
2000
).
24.
L.
Xu
,
L.
Barcos
, and
S. R.
Nagel
, “
Splashing of liquids: Interplay of surface roughness with surrounding gas
,”
Phys. Rev. E
76
,
066311
(
2007
).
25.
J.
Hao
, “
Effect of surface roughness on droplet splashing
,”
Phys. Fluids
29
,
122105
(
2017
).
26.
A.
Latka
,
A. M. P.
Boelens
,
S. R.
Nagel
, and
J. J.
De Pablo
, “
Drop splashing is independent of substrate wetting
,”
Phys. Fluids
30
,
022105
(
2018
).
27.
H.
Almohammadi
and
A.
Amirfazli
, “
Droplet impact: Viscosity and wettability effects on splashing
,”
J. Colloid Interface Sci.
553
,
22
(
2019
).
28.
J. C.
Bird
,
S. S. H.
Tsai
, and
H. A.
Stone
, “
Inclined to splash: Triggering and inhibiting a splash with tangential velocity
,”
New J. Phys.
11
,
063017
(
2009
).
29.
J.
Hao
and
S. I.
Green
, “
Splash threshold of a droplet impacting a moving substrate
,”
Phys. Fluids
29
,
012103
(
2017
).
30.
S.
Mandre
,
M.
Mani
, and
M. P.
Brenner
, “
Precursors to splashing of liquid droplets on a solid surface
,”
Phys. Rev. Lett.
102
,
134502
(
2009
).
31.
M.
Mani
,
S.
Mandre
, and
M. P.
Brenner
, “
Events before droplet splashing on a solid surface
,”
J. Fluid Mech.
647
,
163
(
2010
).
32.
S.
Mandre
and
M. P.
Brenner
, “
The mechanism of a splash on a dry solid surface
,”
J. Fluid Mech.
690
,
148
(
2012
).
33.
Y.
Guo
,
Y.
Lian
, and
M.
Sussman
, “
Investigation of drop impact on dry and wet surfaces with consideration of surrounding air
,”
Phys. Fluids
28
,
073303
(
2016
).
34.
A. M. P.
Boelens
and
J. J.
De Pablo
, “
Simulations of splashing high and low viscosity droplets
,”
Phys. Fluids
30
,
072106
(
2018
).
35.
G.
Riboux
and
J. M.
Gordillo
, “
Experiments of drops impacting a smooth solid surface: A model of the critical impact speed for drop splashing
,”
Phys. Rev. Lett.
113
,
024507
(
2014
).
36.
J. D.
Bernardin
,
C. J.
Stebbins
, and
I.
Mudawar
, “
Mapping of impact and heat transfer regimes of water drops impinging on a polished surface
,”
Int. J. Heat Mass Transfer
40
,
247
(
1997
).
37.
A. L. N.
Moreira
,
A. S.
Moita
, and
M. R.
Panão
, “
Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?
,”
Prog. Energy Combust. Sci.
36
,
554
(
2010
).
38.
G.
Liang
and
I.
Mudawar
, “
Review of drop impact on heated walls
,”
Int. J. Heat Mass Transfer
106
,
103
(
2017
).
39.
A.
Karl
and
A.
Frohn
, “
Experimental investigation of interaction processes between droplets and hot walls
,”
Phys. Fluids
12
,
785
(
2000
).
40.
T.
Tran
,
H. J. J.
Staat
,
A.
Prosperetti
,
C.
Sun
, and
D.
Lohse
, “
Drop impact on superheated surfaces
,”
Phys. Rev. Lett.
108
,
036101
(
2012
).
41.
V.
Bertola
, “
An impact regime map for water drops impacting on heated surfaces
,”
Int. J. Heat Mass Transfer
85
,
430
(
2015
).
42.
M.
Khavari
,
C.
Sun
,
D.
Lohse
, and
T.
Tran
, “
Fingering patterns during droplet impact on heated surfaces
,”
Soft Matter
11
,
3298
(
2015
).
43.
H. J. J.
Staat
,
T.
Tran
,
B.
Geerdink
,
G.
Riboux
,
C.
Sun
,
J. M.
Gordillo
, and
D.
Lohse
, “
Phase diagram for droplet impact on superheated surfaces
,”
J. Fluid Mech.
779
,
R3
(
2015
).
44.
G.
Castanet
,
W.
Chaze
,
O.
Caballina
,
R.
Collignon
, and
F.
Lemoine
, “
Transient evolution of the heat transfer and the vapor film thickness at the drop impact in the regime of film boiling
,”
Phys. Fluids
30
,
122109
(
2018
).
45.
R. H.
Chen
,
S. L.
Chiu
, and
T. H.
Lin
, “
On the collision behaviors of a diesel drop impinging on a hot surface
,”
Exp. Therm. Fluid Sci.
32
,
587
(
2007
).
46.
S.
Sen
,
V.
Vaikuntanathan
, and
D.
Sivakumar
, “
Impact dynamics of alternative jet fuel drops on heated stainless steel surface
,”
Int. J. Therm. Sci.
121
,
99
(
2017
).
47.
H.
Jadidbonab
,
I.
Malgarinos
,
I.
Karathanassis
,
N.
Mitroglou
, and
M.
Gavaises
, “
We-T classification of diesel fuel droplet impact regimes
,”
Proc. R. Soc. A
474
,
20170759
(
2018
).
48.
M.
Bhat
,
R.
Sakthikumar
, and
D.
Sivakumar
, “
Fuel drop impact on heated solid surface in film evaporation regime
,”
Chem. Eng. Sci.
202
,
95
(
2019
).
49.
S.
Mitra
,
M. J.
Sathe
,
E.
Doroodchi
,
R.
Utikar
,
M. K.
Shah
,
V.
Pareek
,
J. B.
Joshi
, and
G. M.
Evans
, “
Droplet impact dynamics on a spherical particle
,”
Chem. Eng. Sci.
100
,
105
(
2013
).
50.
S.
Mitra
,
T. B. T.
Nguyen
,
E.
Doroodchi
,
V.
Pareek
,
J. B.
Joshi
, and
G. M.
Evans
, “
On wetting characteristics of droplet on a spherical particle in film boiling regime
,”
Chem. Eng. Sci.
149
,
181
(
2016
).
51.
I.
Malgarinos
,
N.
Nikolopoulos
, and
M.
Gavaises
, “
A numerical study on droplet-particle collision dynamics
,”
Int. J. Heat Fluid Flow
61
,
499
(
2016
).
52.
S. A.
Banitabaei
and
A.
Amirfazli
, “
Droplet impact onto a solid sphere: Effect of wettability and impact velocity
,”
Phys. Fluids
29
,
062111
(
2017
).
53.
S.
Chen
and
V.
Bertola
, “
Drop impact on spherical soft surfaces
,”
Phys. Fluids
29
,
082106
(
2017
).
54.
I.
Malgarinos
,
N.
Nikolopoulos
, and
M.
Gavaises
, “
Numerical investigation of heavy fuel droplet-particle collisions in the injection zone of a Fluid Catalytic Cracking reactor, Part I: Numerical model and 2D simulations
,”
Fuel Process. Technol.
156
,
317
(
2017
).
55.
I.
Malgarinos
,
N.
Nikolopoulos
, and
M.
Gavaises
, “
Numerical investigation of heavy fuel droplet-particle collisions in the injection zone of a Fluid Catalytic Cracking reactor, part II: 3D simulations
,”
Fuel Process. Technol.
156
,
43
(
2017
).
56.
S.
Mitra
and
G.
Evans
, “
Dynamic surface wetting and heat transfer in a droplet-particle system of less than unity size ratio
,”
Front. Chem.
6
,
259
(
2018
).
57.
Y.
Liu
,
P.
Tan
, and
L.
Xu
, “
Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
3280
(
2015
).
58.
K.
Range
and
F.
Feuillebois
, “
Influence of surface roughness on liquid drop impact
,”
J. Colloid Interface Sci.
203
,
16
(
1998
).
59.
S.
Perry
,
R. H.
Perry
,
D. W.
Green
, and
J. O.
Maloney
,
Perry’s Chemical Engineers Handbook
, 7th ed. (
Mc-Graw Hill, Inc.
,
New York
,
1997
).
60.
W.
Sutherland
, “
The viscosity of gases and molecular force
,”
Philos. Mag.
36
,
507
(
1893
).
You do not currently have access to this content.