In this paper, vortex-dynamical perspectives were adopted to interpret the recently reported observation that the total viscous dissipation of off-center droplet bouncing varies nonmonotonically with the impact parameter [C. He, X. Xia, and P. Zhang, “Non-monotonic viscous dissipation of bouncing droplets undergoing off-center collision,” Phys. Fluids 31, 052004 (2019)]. The particular interest of this study is on analyzing the velocity and vorticity vector fields and their correlations, such as helicity and enstrophy. The helicity analysis identifies a strong interaction between the “ring-shaped” vortices and the “line-shaped” shear layers in the non-axisymmetric droplet internal flow. A general relation between the total enstrophy and the total viscous dissipation rate for an unsteady free-surface flow was theoretically derived and numerically verified. It shows that the equality between the total enstrophy and the total viscous dissipation rate holds for a single-phase flow confined by stationary boundaries but is not satisfied for a gas–liquid two-phase flow due to the interfacial movement. Both the total enstrophy and a defined “half-domain” helicity show the nonmonotonic variation with the impact parameter, implying their interrelation with the nonmonotonic viscous dissipation.

1.
P.
Brazier-Smith
,
S.
Jennings
, and
J.
Latham
, “
The interaction of falling water drops: Coalescence
,”
Proc. R. Soc. London, Ser. A
326
,
393
(
1972
).
2.
S.
Bradley
and
C.
Stow
, “
Collisions between liquid drops
,”
Proc. R. Soc. London, Ser. A
287
,
635
(
1978
).
3.
N.
Ashgriz
and
J.
Poo
, “
Coalescence and separation in binary collisions of liquid drops
,”
J. Fluid Mech.
221
,
183
(
1990
).
4.
Y. J.
Jiang
,
A.
Umemura
, and
C. K.
Law
, “
An experimental investigation on the collision behavior of hydrocarbon droplets
,”
J. Fluid Mech.
234
,
171
(
1992
).
5.
J.
Qian
and
C. K.
Law
, “
Regimes of coalescence and separation in droplet collision
,”
J. Fluid Mech.
331
,
59
(
1997
).
6.
J.-P.
Estrade
,
H.
Carentz
,
G.
Lavergne
, and
Y.
Biscos
, “
Experimental investigation of dynamic binary collision of ethanol droplets—A model for droplet coalescence and bouncing
,”
Int. J. Heat Fluid Flow
20
,
486
(
1999
).
7.
K.-L.
Pan
,
C. K.
Law
, and
B.
Zhou
, “
Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision
,”
J. Appl. Phys.
103
,
064901
(
2008
).
8.
C.
Tang
,
P.
Zhang
, and
C. K.
Law
, “
Bouncing, coalescence, and separation in head-on collision of unequal-size droplets
,”
Phys. Fluids
24
,
022101
(
2012
).
9.
M.
Sommerfeld
and
M.
Kuschel
, “
Modelling droplet collision outcomes for different substances and viscosities
,”
Exp. Fluids
57
,
187
(
2016
).
10.
G.
Finotello
,
R. F.
Kooiman
,
J. T.
Padding
,
K. A.
Buist
,
A.
Jongsma
,
F.
Innings
, and
J.
Kuipers
, “
The dynamics of milk droplet–droplet collisions
,”
Exp. Fluids
59
,
17
(
2018
).
11.
K. H.
Al-Dirawi
and
A. E.
Bayly
, “
A new model for the bouncing regime boundary in binary droplet collisions
,”
Phys. Fluids
31
,
027105
(
2019
).
12.
M.
Orme
, “
Experiments on droplet collisions, bounce, coalescence and disruption
,”
Prog. Energy Combust. Sci.
23
,
65
(
1997
).
13.
G.
Brenn
, “
Droplet collision
,” in
Handbook of Atomization and Sprays
(
Springer
,
Berlin
,
2011
).
14.
H. P.
Kavehpour
, “
Coalescence of drops
,”
Annu. Rev. Fluid Mech.
47
,
245
(
2015
).
15.
N.
Roth
,
C.
Rabe
,
B.
Weigand
,
F.
Feuillebois
, and
J.
Malet
, “
Droplet collision outcomes at high Weber number
,” in
Proceedings of the 21st Conference
(
Institute for Liquid Atomization and Spray Systems
,
2007
).
16.
K.-L.
Pan
,
P.-C.
Chou
, and
Y.-J.
Tseng
, “
Binary droplet collision at high Weber number
,”
Phys. Rev. E
80
,
036301
(
2009
).
17.
G.
Finotello
,
J. T.
Padding
,
N. G.
Deen
,
A.
Jongsma
,
F.
Innings
, and
J.
Kuipers
, “
Effect of viscosity on droplet-droplet collisional interaction
,”
Phys. Fluids
29
,
067102
(
2017
).
18.
C.
Gotaas
,
P.
Havelka
,
H. A.
Jakobsen
,
H. F.
Svendsen
,
M.
Hase
,
N.
Roth
, and
B.
Weigand
, “
Effect of viscosity on droplet-droplet collision outcome: Experimental study and numerical comparison
,”
Phys. Fluids
19
,
102106
(
2007
).
19.
X.
Chen
,
D.
Ma
,
P.
Khare
, and
V.
Yang
, “
Energy and mass transfer during binary droplet collision
,” in
49th AIAA Aerospace Sciences Meeting
(
AIAA
,
2011
).
20.
X.
Chen
,
D.
Ma
, and
V.
Yang
, “
Collision outcome and mass transfer of unequal-sized droplet collision
,” in
50th AIAA Aerospace Sciences Meeting
(
AIAA
,
2012
).
21.
H.
Deka
,
G.
Biswas
,
S.
Chakraborty
, and
A.
Dalal
, “
Coalescence dynamics of unequal sized drops
,”
Phys. Fluids
31
,
012105
(
2019
).
22.
C.
Tang
,
J.
Zhao
,
P.
Zhang
,
C. K.
Law
, and
Z.
Huang
, “
Dynamics of internal jets in the merging of two droplets of unequal sizes
,”
J. Fluid Mech.
795
,
671
(
2016
).
23.
X.
Xia
,
C.
He
,
D.
Yu
,
J.
Zhao
, and
P.
Zhang
, “
Vortex-ring-induced internal mixing upon the coalescence of initially stationary droplets
,”
Phys. Rev. Fluids
2
,
113607
(
2017
).
24.
Z.
Zhang
,
Y.
Chi
,
L.
Shang
,
P.
Zhang
, and
Z.
Zhao
, “
On the role of droplet bouncing in modeling impinging sprays under elevated pressures
,”
Int. J. Heat Mass Transfer
102
,
657
(
2016
).
25.
Z.
Zhang
and
P.
Zhang
, “
Cross-impingement and combustion of sprays in high-pressure chamber and opposed-piston compression ignition engine
,”
Appl. Therm. Eng.
144
,
137
(
2018
).
26.
Z.
Zhang
and
P.
Zhang
, “
Modeling kinetic energy dissipation of bouncing droplets for Lagrangian simulation of impinging sprays under high ambient pressure
,”
Atomization Sprays
28
,
673
(
2018
).
27.
C.
He
,
X.
Xia
, and
P.
Zhang
, “
Non-monotonic viscous dissipation of bouncing droplets undergoing off-center collision
,”
Phys. Fluids
31
,
052004
(
2019
).
28.
S.
Farokhirad
,
J. F.
Morris
, and
T.
Lee
, “
Coalescence-induced jumping of droplet: Inertia and viscosity effects
,”
Phys. Fluids
27
,
102102
(
2015
).
29.
R.
Attarzadeh
and
A.
Dolatabadi
, “
Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces
,”
Phys. Fluids
29
,
012104
(
2017
).
30.
X.
Tang
,
A.
Saha
,
C. K.
Law
, and
C.
Sun
, “
Bouncing drop on liquid film: Dynamics of interfacial gas layer
,”
Phys. Fluids
31
,
013304
(
2019
).
31.
X.
Tang
,
A.
Saha
,
C. K.
Law
, and
C. J. L.
Sun
, “
Bouncing-to-merging transition in drop impact on liquid film: Role of liquid viscosity
,”
Langmuir
34
,
2654
(
2018
).
32.
F.
Blanchette
, “
Modeling the vertical motion of drops bouncing on a bounded fluid reservoir
,”
Phys. Fluids
28
,
032104
(
2016
).
33.
M. R.
Behera
,
A.
Dasgupta
, and
S.
Chakraborty
, “
On the generation of vorticity and hydrodynamics of vortex ring during liquid drop impingement
,”
Phys. Fluids
31
,
082108
(
2019
).
34.
R.
Cresswell
and
B.
Morton
, “
Drop-formed vortex rings—The generation of vorticity
,”
Phys. Fluids
7
,
1363
(
1995
).
35.
T.
Lundgren
and
P.
Koumoutsakos
, “
On the generation of vorticity at a free surface
,”
J. Fluid Mech.
382
,
351
(
1999
).
36.
P.
Shankar
and
M.
Kumar
, “
Vortex rings generated by drops just coalescing with a pool
,”
Phys. Fluids
7
,
737
(
1995
).
37.
K.
Sun
,
P.
Zhang
,
M.
Jia
, and
T.
Wang
, “
Collision-induced jet-like mixing for droplets of unequal-sizes
,”
Int. J. Heat Mass Transfer
120
,
218
(
2018
).
38.
M.-H.
Tsai
,
K. L.
Law
, and
H.-Y.
Chu
, “
Asymmetric vortexes induced traveling drop on an oscillatory liquid bath
,”
Phys. Fluids
31
,
102102
(
2019
).
39.
E.
Coyajee
and
B. J.
Boersma
, “
Numerical simulation of drop impact on a liquid–liquid interface with a multiple marker front-capturing method
,”
J. Comput. Phys.
228
,
4444
(
2009
).
40.
C.
Hu
,
S.
Xia
,
C.
Li
, and
G.
Wu
, “
Three-dimensional numerical investigation and modeling of binary alumina droplet collisions
,”
Int. J. Heat Mass Transfer
113
,
569
(
2017
).
41.
M.
Kwakkel
,
W.-P.
Breugem
, and
B. J.
Boersma
, “
Extension of a CLSVOF method for droplet-laden flows with a coalescence/breakup model
,”
J. Comput. Phys.
253
,
166
(
2013
).
42.
S.
Popinet
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
,
5838
(
2009
).
43.
S.
Popinet
, “
Numerical models of surface tension
,”
Annu. Rev. Fluid Mech.
50
,
49
(
2018
).
44.
X.
Xia
,
C.
He
, and
P.
Zhang
, “
Universality in the viscous-to-inertial coalescence of liquid droplets
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
23467
(
2019
).
45.
N.
Smirnov
,
V.
Betelin
,
V.
Nikitin
,
L.
Stamov
, and
D.
Altoukhov
, “
Accumulation of errors in numerical simulations of chemically reacting gas dynamics
,”
Acta Astronaut.
117
,
338
(
2015
).
46.
N.
Smirnov
,
V.
Betelin
,
R.
Shagaliev
,
V.
Nikitin
,
I.
Belyakov
,
Y. N.
Deryuguin
,
S.
Aksenov
, and
D.
Korchazhkin
, “
Hydrogen fuel rocket engines simulation using LOGOS code
,”
Int. J. Hydrogen Energy
39
,
10748
(
2014
).
47.
P. G.
Saffman
,
Vortex Dynamics
(
Cambridge University Press
,
1992
).
48.
K.-L.
Pan
,
K.-L.
Huang
,
W.-T.
Hsieh
, and
C.-R.
Lu
, “
Rotational separation after temporary coalescence in binary droplet collisions
,”
Phys. Rev. Fluids
4
,
123602
(
2019
).
49.
P. A.
Davidson
,
Turbulence: An Introduction for Scientists and Engineers
(
Oxford University Press
,
2015
).
50.
C. R.
Doering
,
J. D.
Gibbon
, and
J.
Gibbon
,
Applied Analysis of the Navier-Stokes Equations
(
Cambridge University Press
,
1995
).
51.
G.
Tryggvason
, “
Direct numerical simulations of gas–liquid flows
,” in
Multiphase Flow Handbook
(
CRC Press
,
Boca Raton, FL
,
2016
), Chap. 2.2, p.
95
.
You do not currently have access to this content.