Transport of droplets on surfaces is important for a variety of applications such as micro liquid handling and biochemical assays. Here, we report evaporation-induced attraction, chasing, and repulsion between a target pure aqueous (water) droplet and a driver aqueous mixture droplet comprising water and a lower surface tension and lower vapor pressure liquid on a high energy surface. It is observed that for a fixed concentration of the mixture droplet, attraction/chasing or repulsion can be achieved by varying the relative time instants at which the drops are dispensed. Our study reveals that if the water droplet is dispensed within a critical time after dispensing the mixture droplet, the latter will get attracted to and chase the water droplet. On the other hand, if the water droplet is dispensed after this critical time, then it would get repelled from the mixture droplet. We explain the underlying mechanisms that govern the phenomena and demonstrate continuous transport of liquid/cell sample droplets/plugs.

1.
W. L.
Chou
,
P. Y.
Lee
,
C. L.
Yang
,
W. Y.
Huang
, and
Y. S.
Lin
, “
Recent advances in applications of droplet microfluidics
,”
Micromachines
6
,
1249
(
2015
).
2.
T.
Schneider
,
J.
Kreutz
, and
D. T.
Chiu
, “
The potential impact of droplet micro fluidics in biology
,”
Anal. Chem.
85
,
3476
(
2013
).
3.
S.
Daniel
,
M. K.
Chaudhury
, and
J.
Chen
, “
Past drop movements resulting from the phase change on a gradient surface
,”
Science
291
,
633
(
2001
).
4.
Y.
Lu
,
S.
Sathasivan
,
J.
Song
,
C.
Crick
,
C.
Carmalt
, and
I.
Parkin
, “
Robust self-cleaning surfaces that function when exposed to either air or oil
,”
Science
347
,
1132
(
2015
).
5.
A. B.
Theberge
,
F.
Courtois
,
Y.
Schaerli
,
M.
Fischlechner
,
C.
Abell
,
F.
Hollfelder
, and
W. T. S.
Huck
, “
Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology
,”
Angew. Chem., Int. Ed.
49
,
5846
(
2010
).
6.
I.
Barbulovic-Nad
,
H.
Yang
,
P. S.
Park
, and
A. R.
Wheeler
, “
Digital microfluidics for cell-based assays
,”
Lab Chip
8
,
519
(
2008
).
7.
L.-P.
Bergeron-Sandoval
,
N.
Safaee
, and
S. W.
Michnick
, “
Leading edge perspective mechanisms and consequences of macromolecular phase separation
,”
Cell
165
,
1067
(
2016
).
8.
K. T.
Kotz
,
Y.
Gu
, and
G. W.
Faris
, “
Optically addressed droplet-based protein assay
,”
J. Am. Chem. Soc.
127
,
5736
(
2005
).
9.
P. S.
Dittrich
and
A.
Manz
, “
Lab-on-a-chip: Microfluidics in drug discovery
,”
Nat. Rev. Drug Discovery
5
,
210
(
2006
).
10.
H.
Mertaniemi
,
V.
Jokinen
,
L.
Sainiemi
,
S.
Franssila
,
A.
Marmur
,
O.
Ikkala
, and
R. H. A.
Ras
, “
Superhydrophobic tracks for low-friction, guided transport of water droplets
,”
Adv. Mater.
23
,
2911
(
2011
).
11.
S.
Karpitschka
,
C.
Hanske
,
A.
Fery
, and
H.
Riegler
, “
Coalescence and noncoalescence of sessile drops: Impact of surface forces
,”
Langmuir
30
,
6826
(
2014
).
12.
S.
Karpitschka
and
H.
Riegler
, “
Quantitative experimental study on the transition between fast and delayed coalescence of sessile droplets with different but completely miscible liquids
,”
Langmuir
26
,
11823
(
2010
).
13.
R.
Borcia
,
S.
Menzel
,
M.
Bestehorn
,
S.
Karpitschka
, and
H.
Riegler
, “
Delayed coalescence of droplets with miscible liquids: Lubrication and phase field theories
,”
Eur. Phys. J. E
34
,
24
(
2011
).
14.
R.
Borcia
and
M.
Bestehorn
, “
Partial coalescence of sessile drops with different miscible liquids
,”
Langmuir
29
,
4426
(
2013
).
15.
I. U.
Chowdhury
,
P. S.
Mahapatra
, and
A. K.
Sen
, “
Self-driven droplet transport: Effect of wettability gradient and confinement
,”
Phys. Fluids
31
,
042111
(
2019
).
16.
M. K.
Chaudhury
and
G. M.
Whitesides
, “
How to make water run uphill
,”
Science
256
,
1539
(
1992
).
17.
P.
Zhang
,
B.
Peng
,
J.
Wang
, and
L.
Jiang
, “
Bioinspired self-propulsion of water droplets at the convergence of Janus-textured heated substrates
,”
Adv. Funct. Mater.
29
,
1904535
(
2019
).
18.
P.
Li
,
M.
Cao
,
H.
Bai
,
T.
Zhao
,
Y.
Ning
,
X.
Wang
,
K.
Liu
, and
L.
Jiang
, “
Unidirectional liquid manipulation via an integrated mesh with orthogonal anisotropic slippery tracks
,”
Adv. Funct. Mater.
29
,
1904446
(
2019
).
19.
P.
Irajizad
,
S.
Ray
,
N.
Farokhnia
,
M.
Hasnain
,
S.
Baldelli
, and
H.
Ghasemi
, “
Remote droplet manipulation on self-healing thermally activated magnetic slippery surfaces
,”
Adv. Mater. Interfaces
4
,
1700009
(
2017
).
20.
A.
Wixforth
,
C.
Strobl
,
C.
Gauer
,
A.
Toegl
,
J.
Scriba
, and
Z. V.
Guttenberg
, “
Acoustic manipulation of small droplets
,”
Anal. Bioanal. Chem.
379
,
982
(
2004
).
21.
J.
Berná
,
D. A.
Leigh
,
M.
Lubomska
,
S. M.
Mendoza
,
E. M.
Pérez
,
P.
Rudolf
,
G.
Teobaldi
, and
F.
Zerbetto
, “
Macroscopic transport by synthetic molecular machines
,”
Nat. Mater.
4
,
704
(
2005
).
22.
N.
Kavokine
,
M.
Anyfantakis
,
M.
Morel
,
S.
Rudiuk
,
T.
Bickel
, and
D.
Baigl
, “
Light-driven transport of a liquid marble with and against surface flows
,”
Angew. Chem., Int. Ed.
55
,
11183
(
2016
).
23.
K.
Ichimura
, “
Light-driven motion of liquids on a photoresponsive surface
,”
Science
288
,
1624
(
2000
).
24.
K. S.
Khalil
,
S. R.
Mahmoudi
,
N.
Abu-Dheir
, and
K. K.
Varanasi
, “
Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets
,”
Appl. Phys. Lett.
105
,
041604
(
2014
).
25.
Y.
Zhao
,
J.
Fang
,
H.
Wang
,
X.
Wang
, and
T.
Lin
, “
Magnetic liquid marbles: Manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles
,”
Adv. Mater.
22
,
707
(
2010
).
26.
P.
Brunet
,
J.
Eggers
, and
R. D.
Deegan
, “
Vibration-induced climbing of drops
,”
Phys. Rev. Lett.
99
,
144501
(
2007
).
27.
O. D.
Velev
,
B. G.
Prevo
, and
K. H.
Bhatt
, “
On-chip manipulation of free droplets
,”
Nature
426
,
515
(
2003
).
28.
P. R. C.
Gascoyne
,
J. V.
Vykoukal
,
J. A.
Schwartz
,
T. J.
Anderson
,
D. M.
Vykoukal
,
K. W.
Current
,
C.
McConaghy
,
F. F.
Becker
, and
C.
Andrews
, “
Dielectrophoresis-based programmable fluidic processors
,”
Lab Chip
4
,
299
(
2004
).
29.
A. A.
Mariod
and
H. F.
Adam
, “
Review: Gelatin, source, extraction and industrial applications
,”
Acta Sci. Pol., Technol. Aliment.
12
,
135
(
2013
).
30.
X.
Tang
,
P.
Zhu
,
Y.
Tian
,
X.
Zhou
,
T.
Kong
, and
L.
Wang
, “
Mechano-regulated surface for manipulating liquid droplets
,”
Nat. Commun.
8
,
14831
(
2017
).
31.
B. S.
Gallardo
,
V. K.
Gupta
,
F. D.
Eagerton
,
L. I.
Jong
,
V. S.
Craig
,
R. R.
Shah
, and
N. L.
Abbott
, “
Electrochemical principles of active control of liquids on submillimeter scales
,”
Science
283
,
57
(
1999
).
32.
T. S.
Wong
,
S. H.
Kang
,
S. K. Y.
Tang
,
E. J.
Smythe
,
B. D.
Hatton
,
A.
Grinthal
, and
J.
Aizenberg
, “
Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity
,”
Nature
477
,
443
(
2011
).
33.
N. J.
Cira
,
A.
Benusiglio
, and
M.
Prakash
, “
Vapour-mediated sensing and motility in two-component droplets
,”
Nature
519
,
446
(
2015
).
34.
X.
Man
and
M.
Doi
, “
Vapor-induced motion of liquid droplets on an inert substrate
,”
Phys. Rev. Lett.
119
,
044502
(
2017
).
35.
Y.
Wen
,
P. Y.
Kim
,
S.
Shi
,
D.
Wang
,
X.
Man
,
M.
Doi
, and
T. P.
Russell
, “
Vapor-induced motion of two pure liquid droplets
,”
Soft Matter
15
,
2135
(
2019
).
36.
R.
Iqbal
,
B.
Majhy
, and
A. K.
Sen
, “
Facile fabrication and characterization of a PDMS-derived candle soot coated stable biocompatible superhydrophobic and superhemophobic surface
,”
ACS Appl. Mater. Interfaces
9
,
31170
(
2017
).
37.
B.
Majhy
,
R.
Iqbal
,
R.
Gaikwad
, and
A. K.
Sen
, “
Dynamics of capillary flow in an open superoleophilic microchannel and its application to sensing of oil
,”
Microfluid. Nanofluid.
22
,
116
(
2018
).
38.
B.
Majhy
,
R.
Iqbal
, and
A. K.
Sen
, “
Facile fabrication and mechanistic understanding of a transparent reversible superhydrophobic–superhydrophilic surface
,”
Sci. Rep.
8
,
18018
(
2018
).
39.
S. J.
Kim
,
J.
Kim
,
M. W.
Moon
,
K. R.
Lee
, and
H. Y.
Kim
, “
Experimental study of drop spreading on textured superhydrophilic surfaces
,”
Phys. Fluids
25
,
092110
(
2013
).
40.
J. E.
Pye
,
C. E.
Wood
, and
J. C.
Burton
, “
Precursors to molecular slip on smooth hydrophobic surfaces
,”
Phys. Rev. Lett.
121
,
134501
(
2018
).
41.
F. B.
Wyart
,
J.
Meglio
,
D.
Qubrb
, and
P.
De Gennes
, “
Spreading of nonvolatile liquids in a continuum picture
,”
Langmuir
7
,
335
(
1991
).
42.
D.
Brutin
and
V.
Starov
, “
Recent advances in droplet wetting and evaporation
,”
Chem. Soc. Rev.
47
,
558
(
2018
).
43.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena
(
Springer New York
,
New York, NY
,
2004
).
44.
M. N.
Popescu
,
G.
Oshanin
,
S.
Dietrich
, and
A. M.
Cazabat
, “
Precursor films in wetting phenomena
,”
J. Phys.: Condens. Matter
24
,
243102
(
2012
).
45.
H.
Hu
and
R. G.
Larson
, “
Evaporation of a sessile droplet on a substrate
,”
J. Phys. Chem. B
106
,
1334
(
2002
).
46.
I. S.
Khattab
,
F.
Bandarkar
,
M.
Khoubnasabjafari
, and
A.
Jouyban
, “
Density, viscosity, surface tension, and molar volume of propylene glycol + water mixtures from 293 to 323 K and correlations by the Jouyban–Acree model
,”
Arabian J. Chem.
10
,
S71
(
2017
).
47.
P. G.
de Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
(
1985
).
48.
J. L.
Pérez-Díaz
,
M. A.
Álvarez-Valenzuela
, and
J. C.
García-Prada
, “
The effect of the partial pressure of water vapor on the surface tension of the liquid water-air interface
,”
J. Colloid Interface Sci.
381
,
180
(
2012
).
49.
O.
Hegde
,
S.
Chakraborty
,
P.
Kabi
, and
S.
Basu
, “
Vapor mediated control of microscale flow in sessile droplets
,”
Phys. Fluids
30
,
122103
(
2018
).
50.
N. H.
Rhys
,
M. A.
Al-Badri
,
R. M.
Ziolek
,
R. J.
Gillams
,
L. E.
Collins
,
M. J.
Lawrence
,
C. D.
Lorenz
, and
S. E.
McLain
, “
On the solvation of the phosphocholine headgroup in an aqueous propylene glycol solution
,”
J. Chem. Phys.
148
,
135102
(
2018
).
51.
L.
Tadrist
,
D.
Brutin
,
Z.-Q.
Zhu
,
J.-C.
Xie
,
O.
Rahli
, and
Q.-S.
Liu
, “
Evaporation of ethanol drops on a heated substrate under microgravity conditions
,”
Microgravity Sci. Technol.
22
,
387
(
2010
).
52.
F.
Carle
,
S.
Semenov
,
M.
Medale
, and
D.
Brutin
, “
Contribution of convective transport to evaporation of sessile droplets: Empirical model
,”
Int. J. Therm. Sci.
101
,
35
(
2016
).
53.
J.
Bueno
,
Y.
Bazilevs
,
R.
Juanes
, and
H.
Gomez
, “
Droplet motion driven by tensotaxis
,”
Extreme Mech. Lett.
13
,
10
(
2017
).
54.
K. H.
Chu
,
R.
Xiao
, and
E. N.
Wang
, “
Uni-directional liquid spreading on asymmetric nanostructured surfaces
,”
Nat. Mater.
9
,
413
(
2010
).

Supplementary Material

You do not currently have access to this content.