Vertically clamped flexible flags in an oncoming Poiseuille flow were numerically modeled to investigate the hydrodynamic interaction and dynamics of the flexible flags using the immersed boundary method. The number of flags modeled was increased step by step: a single flag, double flags, triple flags, and a large array of multiple flags were modeled. The flexible flags displayed a flapping mode or a fully deflected mode, depending on the relationship between the elastic inner force and the hydrodynamic force. The bending angle (α), flapping amplitude (A), and period (T) of the single flag decreased as the bending rigidity (γ) increased. In the double and triple flag systems, the bending angle of the first flag reached a steady state as the gap distance (d) increased. The gap distance affected the position of the flag relative to the vortical structures. The vortical structures merged and formed a large vortex. Small vortical structures penetrated the large gap to drive flag flapping and force flag bending. In a large array of multiple flags, all flags were present in the fully deflected mode for a small gap distance. As the gap distance increased, the interactions between the flags increased. The flags were significantly influenced by the inlet and exit conditions.

1.
Belmonte
,
A.
,
Shelley
,
M. J.
,
Eldakar
,
S. T.
, and
Wiggins
,
C. H.
, “
Dynamic patterns and self-knotting of a driven hanging chain
,”
Phys. Rev. Lett.
87
(
11
),
114301
(
2001
).
2.
Bi
,
X. B.
and
Zhu
,
Q.
, “
Fluid-structure investigation of a squid-inspired swimmer
,”
Phys. Fluids
31
,
101901
(
2019
).
3.
Connell
,
B. S. H.
and
Yue
,
D. K. P.
, “
Flapping dynamics of a flag in a uniform stream
,”
J. Fluid Mech.
581
,
33
67
(
2007
).
4.
Dong
,
G. J.
and
Lu
,
X. Y.
, “
Characteristics of flow over travelling wavy foils in a side-by-side arrangement
,”
Phys. Fluids
19
,
057107
(
2007
).
5.
Eloy
,
C.
,
Souilliez
,
C.
, and
Schouveiler
,
L.
, “
Flutter of a rectangular plate
,”
J. Fluids Struct.
23
,
904
919
(
2007
).
6.
Favier
,
J.
,
Li
,
C.
,
Kamps
,
L.
,
Revell
,
A.
,
O’Connor
,
J.
, and
Brücker
,
C.
, “
The PELskin project—Part I: Fluid-structure interaction for a row of flexible flaps: A reference study in oscillating channel flow
,”
Meccanica
52
(
8
),
1767
1780
(
2017
).
7.
Ghisalberti
,
M.
, “
Mixing layers and coherent structures in vegetated aquatic flows
,”
J. Geophys. Res.
107
(
C2
),
3-1
3-11
, (
2002
).
8.
Glowinski
,
R.
,
Pana
,
T.-W.
,
Hesla
,
T. I.
, and
Joseph
,
D. D.
, “
A distributed Lagrange multiplier/fictitious domain method for particulate flows
,”
Int. J. Multiphase Flow
25
,
755
794
(
1999
).
9.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
, “
Modeling a no-slip flow boundary with an external force field
,”
J. Comput. Phys.
105
,
354
366
(
1993
).
10.
Guo
,
Z.
,
Kim
,
S. Y.
, and
Sung
,
H. J.
, “
Pulsating flow and heat transfer in a pipe partially filled with a porous medium
,”
Int. J. Heat Mass Transfer
40
,
4209
4218
(
1997
).
11.
Harwood
,
A. R. G.
,
O’Connor
,
J.
,
Muñoz
,
J. S.
,
Santasmasas
,
M. C.
, and
Revell
,
A. J.
, “
LUMA: A many-core, fluid-structure interaction solver based on the Lattice–Boltzmann method
,”
SoftwareX
7
,
88
94
(
2018
).
12.
Huang
,
W.-X.
,
Shin
,
S. J.
, and
Sung
,
H. J.
, “
Simulation of flexible flags in a uniform flow by the immersed boundary method
,”
J. Comput. Phys.
226
,
2206
2228
(
2007
).
13.
Huang
,
W.-X.
and
Sung
,
H. J.
, “
An immersed boundary method for fluid-flexible structure interaction
,”
Comput. Methods Appl. Mech. Eng.
198
,
2650
2661
(
2009
).
14.
Huang
,
W.-X.
and
Sung
,
H. J.
, “
Three-dimensional simulation of a flapping flag in a uniform flow
,”
J. Fluid Mech.
653
,
301
336
(
2010
).
15.
Kadapa
,
C.
,
Dettmer
,
W. G.
, and
Perić
,
D.
, “
A stabilised immersed framework on hierarchical b-spline grids for fluid-flexible structure interaction with solid–solid contact
,”
Comput. Methods Appl. Mech. Eng.
335
,
472
489
(
2018
).
16.
Kim
,
M. J.
and
Lee
,
J. H.
, “
Flapping dynamics of a flexible flag clamped vertically in a viscous uniform flow
,”
J. Mech. Sci. Technol.
33
(
3
),
1243
1256
(
2019
).
17.
Kim
,
S.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
Constructive and destructive interaction modes between two tandem flexible flags in viscous flow
,”
J. Fluid Mech.
661
,
511
521
(
2010
).
18.
Lee
,
J. B.
,
Park
,
S. G.
,
Kim
,
B.
,
Ryu
,
J.
, and
Sung
,
H. J.
, “
Heat transfer enhancement by flexible flags clamped vertically in a Poiseuille channel flow
,”
Int. J. Heat Mass Transf.
107
,
391
402
(
2017
).
19.
Lee
,
J. B.
,
Park
,
S. G.
, and
Sung
,
H. J.
, “
Heat transfer enhancement by asymmetrically clamped flexible flags in a channel flow
,”
Int. J. Heat Mass Transfer
116
,
1003
1015
(
2018
).
20.
Luhar
,
M.
,
Infantes
,
E.
, and
Nepf
,
H.
, “
Seagrass blade motion under waves and its impact on wave decay
,”
J. Geophys. Res.: Oceans
122
,
3736
3752
, (
2017
).
21.
Luhar
,
M.
and
Nepf
,
H.
, “
Wave-induced dynamics of flexible blades
,”
J. Fluids Struct.
61
,
20
41
(
2016
).
22.
Mullarney
,
J. C.
and
Henderson
,
S. M.
, “
Wave-forced motion of submerged single-stem vegetation
,”
J. Geophys. Res.
115
,
C12061
, (
2010
).
23.
Nepf
,
H. M.
, “
Hydrodynamics of vegetated channels
,”
J. Hydraul. Res.
50
(
3
),
262
279
(
2012
).
24.
O’Connor
,
J.
and
Revell
,
A.
, “
Dynamic interactions of multiple wall-mounted flexible flaps
,”
J. Fluid Mech.
870
,
189
216
(
2019
).
25.
Park
,
S. G.
,
Kim
,
B.
,
Chang
,
C. B.
,
Ryu
,
J.
, and
Sung
,
H. J.
, “
Enhancement of heat transfer by a self-oscillating inverted flag in a Poiseuille channel flow
,”
Int. J. Heat Mass Transf.
96
,
362
370
(
2016
).
26.
Park
,
T. S.
and
Sung
,
H. J.
, “
A nonlinear low-Reynolds number k-ε model for turbulent separated and reattaching flows. 1. Flow field computations
,”
Int. J. Heat Mass Transf.
38
(
14
),
2657
2666
(
1995
).
27.
Peng
,
Z. R.
,
Huang
,
H. B.
, and
Lu
,
X.-Y.
, “
Hydrodynamic schooling of multiple self-propelled flapping plates
,”
J. Fluid Mech.
853
,
587
600
(
2018
).
28.
Peskin
,
C. S.
, “
Flow patterns around heart valves: A numerical method
,”
J. Comput. Phys.
10
,
252
271
(
1972
).
29.
Peskin
,
C. S.
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
30.
Shin
,
S. J.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method
,”
Int. J. Numer. Methods Fluids
58
,
263
286
(
2008
).
31.
Shoele
,
K.
and
Mittal
,
R.
, “
Computational study of flow-induced vibration of a reed in a channel and effect on convective heat transfer
,”
Phys. Fluids
26
,
127103
(
2014
).
32.
Singh
,
R.
,
Bandi
,
M. M.
,
Mahadevan
,
A.
, and
Mandre
,
S.
, “
Linear stability analysis for monami in a submerged seagrass bed
,”
J. Fluid Mech.
786
,
R1
(
2016
).
33.
Tornberg
,
A. K.
and
Shelley
,
M. J.
, “
Simulating the dynamics and interactions of flexible fibers in Stokes flows
,”
J. Comput. Phys.
196
,
8
40
(
2004
).
34.
Uddin
,
E.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
Interaction modes of multiple flexible flags in a uniform flow
,”
J. Fluid Mech.
729
,
563
583
(
2013
).
35.
Uddin
,
E.
,
Huang
,
W.-X.
, and
Sung
,
H. J.
, “
Actively flapping tandem flexible flags in a viscous flow
,”
J. Fluid Mech.
780
,
120
142
(
2015
).
36.
Uhlmann
,
M.
, “
An immersed boundary method with direct forcing for the simulation of particulate flows
,”
J. Comput. Phys.
209
,
448
476
(
2005
).
37.
Wang
,
Y.
,
Jimack
,
P. K.
, and
Walkley
,
M. A.
, “
A one-field monolithic fictitious domain method for fluid–structure interactions
,”
Comput. Methods Appl. Mech. Eng.
317
,
1146
1168
(
2017
).
38.
Yeh
,
P. D.
and
Alexeev
,
A.
, “
Free swimming of an elastic plate plunging at low Reynolds number
,”
Phys. Fluids
26
,
053604
(
2014
).
39.
Yu
,
Z.
, “
A DLM/FD method for fluid/flexible-body interactions
,”
J. Comput. Phys.
207
,
1
27
(
2005
).
40.
Zhang
,
J.
,
Childress
,
S.
,
Libchaber
,
A.
, and
Shelley
,
M.
, “
Flexible flags in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind
,”
Nature
408
,
835
839
(
2000
).
41.
Zhu
,
L.
and
Peskin
,
C. S.
, “
Interaction of two flapping flags in a flowing soap film
,”
Phys. Fluids
15
(
7
),
1954
1960
(
2003
).
42.
Zhu
,
Q.
and
Peng
,
Z.
, “
Mode coupling and flow energy harvesting by a flapping foil
,”
Phys. Fluids
21
,
033601
(
2009
).
You do not currently have access to this content.